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1 Model description

Let y® be an n; x 1 vector corresponding to the respiratory sinus arrhythmia (RSA) measure-
ments for a participant ¢ € {1,2,..., N} where n; represents the number of observations for
participant ¢. Let b represent the corresponding latent RSA state sequence for participant
i where for each time point k € {1,2,...,n;}, b,(;) € {1,2,3} meaning the latent RSA state
at any given instance in time can be from one of three states where bg) = 1 corresponds to
baseline. For the purposes of fitting the hidden Markov model (HMM), we will assume that the

true, latent RSA state of each participant is baseline during the pre-stressor/baseline phase of

(

the experiment (i.e. bjz) =1for j =1,2,...,k* — 1 where k* is the time in which the stressor
is introduced). As mentioned in the manuscript, the interpretation of states 2 and 3 need not
correspond to reactivity and recovery because we allow all transitions between the three states.
The possible state transitions can be illustrated with the directed graph (left) and adjacency
matrix (right) below:
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where
sy = state 1 (baseline), s9 = state 2, s3 = state 3.

Lastly, there exists three covariates of interest that we believe can effect the RSA measurements:
(1) age, (2) sex, and (3) indicator of if the participant’s parent has a Bachelor’s degree or higher
(edu). Lastly, to address the second aim of the manuscript, Daily Life Experiences of Racism
(DLER) is included in the HMM as a predictor (details below) to quantify the effect of prior
exposure to racial discrimination on parasympathetic nervous system (PNS) response. Note
that age and DLER are centered when they are used in the HMM.

1.1 Markov model for latent RSA state sequence

The repeated RSA measurements are processed such that the observations occur on a 30 second
grid. Therefore, we can treat time as discrete since the inter-observation times are equal for all
participants. Within the HMM, we model b as a discrete time, time homogeneous Markov



process defined by a transition probability matrix, P, given by
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In order to address all research aims, we will consider three different parameterizations of g;,
for j € {1,...,6}:

Aim 1 qj = CO,j + Cl,j -age; + (27]‘ . 1(SeXZ' = 1) + C3,j . 1(edui = 1)
Aim 2 (covariates) q; = <0,j + Cl,j -age; + CQJ . 1(SGXZ' = 1) + <3,j . 1(edui = 1) + C4,j - DLER;
Aim 2 (only DLER) q; = (o j + (1,5 - DLER;

Let ¢; represent the vector of (. ; coefficients for each aim and for j € {1,2,...,6}.

1.2 Random effect mean response model

The RSA response of a participant ¢ at a given time k, y,(:), is modeled as a Gaussian random

variable with a Gaussian random effect mean, conditional on the RSA state, b,(j) (i.e. state-

specific parent means and parent standard deviations are defined for each RSA state). Hence,
for each of the respective research aims, we have

Aim 1 gt = 2Oy 0l 10 = 1) 4l 10 = 2) + a1 = 3) + €
Aim 2 (covariates)  y\” =2V~ + (ul” + DLER; - 6,) - 10\ = 1)+
(uS? + DLER; - 8) - 1(b = 2) + (u’ + DLER,; - 83) - 1(b = 3) + €\”
Aim 2 (only DLER) 3" = (u{") + DLER; - 6,) - 10" = 1) + (u) + DLER; - 6) - 15" = 2)+
(uf) + DLER, - 63) - 1(b\") = 3) + €\”

where e,(;) w N(0,72) for all i, k, ugi) ud N(p,0?), ug) ud N(pu+a,o3), u:(;) o N(u+B,02), and

2 = (age; 1sex;=1) ledw=1), v=(n 72 ) -

Now, let bgi) be a n; x 1 vector defined as b,(f) =s, Vke{l,...,n;},and s € {1,2,3}. Then,
the distribution of 3 takes the following form according to the different aims:

Aim 1:
y(l) | b§1)7 u, &, Ba’)’ﬂ—a g1~ an [(x(l)’)’ + M) : 1n,-7 J% : JnZ + 7—2 : Im]
y(l) | bg)a M, &, ﬁ77)7-7 agg ~ an |:(m(l)’y + H + O[) . 1”1'7 U% . an + 7—2 . ITL1:|

y(l) | bi(ii)aﬂaaaﬁa777_a a3 ~ an [(m(l)’)’ +un+ B) : ]-ni’ 032, : Jnl + 7'2 : Inl]



Aim 2 (covariates) :

y O 16,0, 8,7, 781,01 ~ No [(@ Dy + DLER; - 8+ 1) - 1y, 08 Jp, + 72 1|

YD 65,10, 8,7, 782,02 ~ Ny, | (@5 + DLER; - 6 + i+ 0) - Ly, 03 - T + 72 I, |

y D 65,0, 8,7, 7, 88,0 ~ Ny [ (@05 + DLER; - 8 + i+ B) - 1, 0F - T, + 72T, |

(2)

Aim 2 (only DLER) :

yD |6y, 8,7,61,00 ~ N, [(DLER; - 61 + 1) - 1y, 0%+ Ty + 72 1,.]

’) | b2 J s o B, T, 02,09 ~ Ny, [(DLERi o+ p+a)- 1, 0% I, +72. Ini]
y (@) | b3 ,u,a,,B,T, 83,03 ~ Ny, [(DLERi 03+ p+pB) 1, Ug T, + 2. Ini]

where 1,,, is a column vector of ones with length n;, J,,, = 1,, -1%, and I,,; is the identity matrix
of dimension n; x n;. Recall that a canonical modeling assumption for HMMs is assuming the
response observations over time are conditionally independent of one another given the latent
state sequence (i.e., (y,(;) \ b,(;)) 1 (yj(.l) | bg.z)) for k # j and k,j € {1,2,...,n;}). However, due
to the random effects structure in modeling the mean of the RSA response, this conditional
independence assumption no longer holds for all k£ € {1,2,...,n;}. Hence, define

(@)

In other words, ys’ for s € {1,2,3} is the vector of RSA measurements corresponding to the
indices in which the latent RSA state sequence, b(l), takes the value s. Consequently, let

nij = Z 1060 =1), n, Z 108 =2), niz=Y 100 =3).
k=1 k=1

Then, in conjunction with (1) and (2), we can write
Aim 1:
! ) = 1 e By mon ~ Ny (@07 +40) Loy 03Ty 472 T )
] {b,g =2} a,B,7, 7,02 ~ Np, ((:c(i)'y ) 1, 05T, + 72 In2>
)

@) ’{b _3}k 1 My & 7/87'777-70.3NNHs((w(i)’Y—i_u—i_ﬁ)'lnsa 0-?2,'JTL3+7_2'ITL3

Aim 2 (covariates):

ut) {0 = 1Ly 0 8,7, 701,01 ~ Ny (@09 + DLER 01 + ) -1y, 03T 4721y, )

) | {bk - 2}k 1M & a,3,7,T,02,09 ~ N, (($(i)7+DLERi 02 + p+ a) “1p,, U% I, +7'2 I,

y3) ’ {bk _3}k 17“7 767777—76370—3NNng((w(i)’y_‘_DLERi'63+M+/6>'17137 J%'Jng +T2'In3



Aim 2 (only DLER):

ygi) | {bg) =1} o, B,7,61,01 ~ Ny, ((DLER; - 61 + p) - 1y, o Jp, + 7% L)
Y | {00 = 2472, B, 7,69, 09 ~ Nppy (DLER, - 63 4 1+ ) - Ly, 05 - Ty + 72 - 1)
vy | {6 = 3132y 1.0, 8.7.83,05 ~ Noy (DLER; -85 + 14 8) - Loy, 03 - oy +77 - L)

1.3 Likelihood expression

Using the information from Section 1.1 and 1.2, we can write the likelihood for participant ¢ as
follows:

f(y(l) ’ b(l)vu) «, Ba YT, 513 627 635 701,02,03, {C]}?:l)
3 ng
= (H PO | {0 = shizyoma, 8,7, ws)) (wg@ 11 Pbggpb,@)
s=1 k=2

where 7 is a 3 x 1 initial state probability vector. Since we assume that a participant’s true RSA
state sequence before the introduction of a stressor is baseline (state 1), we know 77 = (1,0,0).
Then, the full joint likelihood expression is given by

N
f(y(l)ay@)a s 7y(N)) = H f(y(l) | b(Z)a u, &, 57777_’ 617627537017027J3a {C_y}?zl)
i=1

Parameter estimation is done through a Metropolis-Hastings update via Bayesian Markov
chain Monte Carlo (MCMC) sampling techniques. Assuming the prior distribution for each
parameter is an uninformed Gaussian distribution, we can write the joint posterior as

ﬂ_(b(i)vu7 «, /67 Y, T, 517 527 637 701,02,03, {C]}?:l | {y(Z) }7{\41)
N
o8 [H f(y(l) ‘ b(Z)7 M, &, /87 Y, T, 517 527 537 01,02,03, {C]}?:l]
i=1

X W(b(i)vu7avﬁa7577 517 527 535 701,02,03, {CJ}?:I)

Note that b is treated as a sequence of unknown parameters, thus using rejection sampling,

we can estimate its posterior distribution. Additionally, recall that we assume b,(;) =1 for all
k < k* where k* is the time in which the stressor is introduced. Thus, we only need to sample

b for k € {k*, k* +1,...,n;}.



