
Supplemental Appendix

Vanessa V. Volpe, Emmett B. Kendall, Abbey N. Collins, Matthew Graham, Jonathan P.
Williams, Steven Holochwost

1 Model description

Let y(i) be an ni × 1 vector corresponding to the respiratory sinus arrhythmia (RSA) measure-
ments for a participant i ∈ {1, 2, . . . , N} where ni represents the number of observations for
participant i. Let b(i) represent the corresponding latent RSA state sequence for participant

i where for each time point k ∈ {1, 2, . . . , ni}, b(i)k ∈ {1, 2, 3} meaning the latent RSA state

at any given instance in time can be from one of three states where b
(i)
k = 1 corresponds to

baseline. For the purposes of fitting the hidden Markov model (HMM), we will assume that the
true, latent RSA state of each participant is baseline during the pre-stressor/baseline phase of

the experiment (i.e. b
(i)
j = 1 for j = 1, 2, . . . , k⋆ − 1 where k⋆ is the time in which the stressor

is introduced). As mentioned in the manuscript, the interpretation of states 2 and 3 need not
correspond to reactivity and recovery because we allow all transitions between the three states.
The possible state transitions can be illustrated with the directed graph (left) and adjacency
matrix (right) below:

s1

s2

s3


s1 s2 s3

s1 1 1 1
s2 1 1 1
s3 1 1 1


where

s1 = state 1 (baseline), s2 = state 2, s3 = state 3.

Lastly, there exists three covariates of interest that we believe can effect the RSA measurements:
(1) age, (2) sex, and (3) indicator of if the participant’s parent has a Bachelor’s degree or higher
(edu). Lastly, to address the second aim of the manuscript, Daily Life Experiences of Racism
(DLER) is included in the HMM as a predictor (details below) to quantify the effect of prior
exposure to racial discrimination on parasympathetic nervous system (PNS) response. Note
that age and DLER are centered when they are used in the HMM.

1.1 Markov model for latent RSA state sequence

The repeated RSA measurements are processed such that the observations occur on a 30 second
grid. Therefore, we can treat time as discrete since the inter-observation times are equal for all
participants. Within the HMM, we model b(i) as a discrete time, time homogeneous Markov
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process defined by a transition probability matrix, P, given by

P =

 1
1+eq1+eq2 0 0

0 1
1+eq3+eq4 0

0 0 1
1+eq5+eq6

 ·

 1 eq1 eq2

eq3 1 eq4

eq5 eq6 1

.

In order to address all research aims, we will consider three different parameterizations of qj ,
for j ∈ {1, . . . , 6}:

Aim 1 qj = ζ0,j + ζ1,j · agei + ζ2,j · 1(sexi = 1) + ζ3,j · 1(edui = 1)

Aim 2 (covariates) qj = ζ0,j + ζ1,j · agei + ζ2,j · 1(sexi = 1) + ζ3,j · 1(edui = 1) + ζ4,j ·DLERi

Aim 2 (only DLER) qj = ζ0,j + ζ1,j ·DLERi

Let ζj represent the vector of ζ·,j coefficients for each aim and for j ∈ {1, 2, . . . , 6}.

1.2 Random effect mean response model

The RSA response of a participant i at a given time k, y
(i)
k , is modeled as a Gaussian random

variable with a Gaussian random effect mean, conditional on the RSA state, b
(i)
k (i.e. state-

specific parent means and parent standard deviations are defined for each RSA state). Hence,
for each of the respective research aims, we have

Aim 1 y
(i)
k = x(i)γ + u

(i)
1 · 1(b(i)k = 1) + u

(i)
2 · 1(b(i)k = 2) + u

(i)
3 · 1(b(i)k = 3) + ϵ

(i)
k

Aim 2 (covariates) y
(i)
k = x(i)γ + (u

(i)
1 +DLERi · δ1) · 1(b(i)k = 1)+

(u
(i)
2 +DLERi · δ2) · 1(b(i)k = 2) + (u

(i)
3 +DLERi · δ3) · 1(b(i)k = 3) + ϵ

(i)
k

Aim 2 (only DLER) y
(i)
k = (u

(i)
1 +DLERi · δ1) · 1(b(i)k = 1) + (u

(i)
2 +DLERi · δ2) · 1(b(i)k = 2)+

(u
(i)
3 +DLERi · δ3) · 1(b(i)k = 3) + ϵ

(i)
k

where ϵ
(i)
k

iid∼ N(0, τ2) for all i, k, u
(i)
1

iid∼ N(µ, σ2
1), u

(i)
2

iid∼ N(µ+α, σ2
2), u

(i)
3

iid∼ N(µ+β, σ2
3), and

x(i) =
(
agei 1(sexi = 1) 1(edui = 1)

)
, γ =

(
γ1 γ2 γ3

)T
.

Now, let b
(i)
s be a ni×1 vector defined as b

(i)
k = s, ∀k ∈ {1, . . . , ni}, and s ∈ {1, 2, 3}. Then,

the distribution of y(i) takes the following form according to the different aims:

Aim 1 :

y(i) | b(i)1 , µ, α, β,γ, τ, σ1 ∼ Nni

[
(x(i)γ + µ) · 1ni , σ2

1 · Jni + τ2 · Ini

]
y(i) | b(i)2 , µ, α, β,γ, τ, σ2 ∼ Nni

[
(x(i)γ + µ+ α) · 1ni , σ

2
2 · Jni + τ2 · Ini

]
y(i) | b(i)3 , µ, α, β,γ, τ, σ3 ∼ Nni

[
(x(i)γ + µ+ β) · 1ni , σ

2
3 · Jni + τ2 · Ini

] (1)
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Aim 2 (covariates) :

y(i) | b(i)1 , µ, α, β,γ, τ, δ1, σ1 ∼ Nni

[
(x(i)γ +DLERi · δ1 + µ) · 1ni , σ2

1 · Jni + τ2 · Ini

]
y(i) | b(i)2 , µ, α, β,γ, τ, δ2, σ2 ∼ Nni

[
(x(i)γ +DLERi · δ2 + µ+ α) · 1ni , σ

2
2 · Jni + τ2 · Ini

]
y(i) | b(i)3 , µ, α, β,γ, τ, δ3, σ3 ∼ Nni

[
(x(i)γ +DLERi · δ3 + µ+ β) · 1ni , σ

2
3 · Jni + τ2 · Ini

]
Aim 2 (only DLER) :

y(i) | b(i)1 , µ, α, β, τ, δ1, σ1 ∼ Nni

[
(DLERi · δ1 + µ) · 1ni , σ2

1 · Jni + τ2 · Ini

]
y(i) | b(i)2 , µ, α, β, τ, δ2, σ2 ∼ Nni

[
(DLERi · δ2 + µ+ α) · 1ni , σ

2
2 · Jni + τ2 · Ini

]
y(i) | b(i)3 , µ, α, β, τ, δ3, σ3 ∼ Nni

[
(DLERi · δ3 + µ+ β) · 1ni , σ

2
3 · Jni + τ2 · Ini

]

(2)

where 1ni is a column vector of ones with length ni, Jni = 1ni ·1Tni
, and Ini is the identity matrix

of dimension ni × ni. Recall that a canonical modeling assumption for HMMs is assuming the
response observations over time are conditionally independent of one another given the latent

state sequence (i.e., (y
(i)
k | b(i)k ) ⊥ (y

(i)
j | b(i)j ) for k ̸= j and k, j ∈ {1, 2, . . . , ni}). However, due

to the random effects structure in modeling the mean of the RSA response, this conditional
independence assumption no longer holds for all k ∈ {1, 2, . . . , ni}. Hence, define

y
(i)
1 := {y(i)k }

k : b
(i)
k =1

, y
(i)
2 := {y(i)k }

k : b
(i)
k =2

, y
(i)
3 := {y(i)k }

k : b
(i)
k =3

.

In other words, y
(i)
s for s ∈ {1, 2, 3} is the vector of RSA measurements corresponding to the

indices in which the latent RSA state sequence, b(i), takes the value s. Consequently, let

ni,1 :=

ni∑
k=1

1(b(i)k = 1), ni,2 :=

ni∑
k=1

1(b(i)k = 2), ni,3 :=

ni∑
k=1

1(b(i)k = 3).

Then, in conjunction with (1) and (2), we can write

Aim 1:

y
(i)
1 | {b(i)k = 1}n1

k=1, µ, α, β,γ, τ, σ1 ∼ Nn1

(
(x(i)γ + µ) · 1n1 , σ2

1 · Jn1 + τ2 · In1

)
y
(i)
2 | {b(i)k = 2}n2

k=1, µ, α, β,γ, τ, σ2 ∼ Nn2

(
(x(i)γ + µ+ α) · 1n2 , σ

2
2 · Jn2 + τ2 · In2

)
y
(i)
3 | {b(i)k = 3}n3

k=1, µ, α, β,γ, τ, σ3 ∼ Nn3

(
(x(i)γ + µ+ β) · 1n3 , σ

2
3 · Jn3 + τ2 · In3

)

Aim 2 (covariates):

y
(i)
1 | {b(i)k = 1}n1

k=1, µ, α, β,γ, τ, δ1, σ1 ∼ Nn1

(
(x(i)γ +DLERi · δ1 + µ) · 1n1 , σ2

1 · Jn1 + τ2 · In1

)
y
(i)
2 | {b(i)k = 2}n2

k=1, µ, α, β,γ, τ, δ2, σ2 ∼ Nn2

(
(x(i)γ +DLERi · δ2 + µ+ α) · 1n2 , σ

2
2 · Jn2 + τ2 · In2

)
y
(i)
3 | {b(i)k = 3}n3

k=1, µ, α, β,γ, τ, δ3, σ3 ∼ Nn3

(
(x(i)γ +DLERi · δ3 + µ+ β) · 1n3 , σ

2
3 · Jn3 + τ2 · In3

)
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Aim 2 (only DLER):

y
(i)
1 | {b(i)k = 1}n1

k=1, µ, α, β, τ, δ1, σ1 ∼ Nn1

(
(DLERi · δ1 + µ) · 1n1 , σ2

1 · Jn1 + τ2 · In1

)
y
(i)
2 | {b(i)k = 2}n2

k=1, µ, α, β, τ, δ2, σ2 ∼ Nn2

(
(DLERi · δ2 + µ+ α) · 1n2 , σ

2
2 · Jn2 + τ2 · In2

)
y
(i)
3 | {b(i)k = 3}n3

k=1, µ, α, β, τ, δ3, σ3 ∼ Nn3

(
(DLERi · δ3 + µ+ β) · 1n3 , σ

2
3 · Jn3 + τ2 · In3

)
1.3 Likelihood expression

Using the information from Section 1.1 and 1.2, we can write the likelihood for participant i as
follows:

f(y(i) | b(i), µ, α, β,γ, τ, δ1, δ2, δ3, σ1, σ2, σ3, {ζj}6j=1)

=

(
3∏

s=1

f(y(i)
s | {b(i)k = s}ns

k=1, µ, α, β,γ, τ, δs, σs)

)(
πT

b
(i)
1

·
ni∏
k=2

P
b
(i)
k−1,b

(i)
k

)

where π is a 3×1 initial state probability vector. Since we assume that a participant’s true RSA
state sequence before the introduction of a stressor is baseline (state 1), we know πT = (1, 0, 0).
Then, the full joint likelihood expression is given by

f(y(1),y(2), . . . ,y(N)) =

N∏
i=1

f(y(i) | b(i), µ, α, β,γ, τ, δ1, δ2, δ3, σ1, σ2, σ3, {ζj}6j=1).

Parameter estimation is done through a Metropolis-Hastings update via Bayesian Markov
chain Monte Carlo (MCMC) sampling techniques. Assuming the prior distribution for each
parameter is an uninformed Gaussian distribution, we can write the joint posterior as

π
(
b(i), µ, α, β,γ, τ, δ1, δ2, δ3, σ1, σ2, σ3, {ζj}6j=1 | {y(i)}Ni=1

)
∝

[
N∏
i=1

f(y(i) | b(i), µ, α, β,γ, τ, δ1, δ2, δ3, σ1, σ2, σ3, {ζj}6j=1

]
× π(b(i), µ, α, β,γ, τ, δ1, δ2, δ3, σ1, σ2, σ3, {ζj}6j=1)

Note that b(i) is treated as a sequence of unknown parameters, thus using rejection sampling,

we can estimate its posterior distribution. Additionally, recall that we assume b
(i)
k = 1 for all

k < k⋆ where k⋆ is the time in which the stressor is introduced. Thus, we only need to sample

b
(i)
k for k ∈ {k⋆, k⋆ + 1, . . . , ni}.
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