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Abstract
We study variation in policing outcomes attributable to differential policing practices in New York City (NYC) 
using geographic regression discontinuity designs (GeoRDDs). By focusing on small geographic windows 
near police precinct boundaries, we can estimate local average treatment effects of police precinct 
practices on arrest rates. We propose estimands and develop estimators for the GeoRDD when the data 
come from a spatial point process. Standard GeoRDDs rely on continuity assumptions of the potential 
outcome surface or a local randomization assumption within a window around the boundary. These 
assumptions, however, can easily be violated in real applications. We develop a novel and robust approach 
to testing whether there are differences in policing outcomes that are caused by differences in police 
precinct policies across NYC. Importantly, this approach is applicable to standard regression discontinuity 
designs with both numeric and point process data. This approach is robust to violations of traditional 
assumptions made and is valid under weaker assumptions. We use a unique form of resampling to provide 
a valid estimate of our test statistic’s null distribution even under violations of standard assumptions. This 
procedure gives substantially different results in the analysis of NYC arrest rates than those that rely on 
standard assumptions.
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1 Introduction
Policing varies across political boundaries, such as state or city borders. Such differences are 
expected, but we know very little about whether smaller, sub-municipal boundaries like po
lice districts, precincts, and service areas also influence police outcomes (Klinger, 1997). This 
lack of research persists despite police officers reporting that their behaviour and perception 
are influenced by precinct boundaries (Hassell, 2007). Police have wide discretion when 
choosing to make an arrest, so arrest rates could be particularly susceptible to spatial vari
ation (Herbert, 1996). Understanding whether precincts police differently has important im
plications for equity and policy. Variation in policing between cities is tolerated because it 
results, in part, from the electoral choices of residents. Variation within cities, however, gen
erates a more troubling kind of inequality. Residents do not vote for their police precinct 
commander and they expect treatment equal to that of people in other neighbourhoods. 
Policing variation generated by differences in police precinct policies or practices might 
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also compound other forms of spatial inequity like residential segregation, racial bias, or high 
crime areas (Bell, 2020).

Another potential consequence of between-precinct variation in policing is diminished policy 
efficacy. Some recent police reform efforts have attempted to reduce the number of pedestrian 
stops and frisks, reduce the use of deadly force, and improve police-community relations. Most 
such reforms are implemented at the city scale, but if significant variation exists between police 
precincts, such a one-size-fits-all approach might fail. Even place-based interventions like 
hot-spots policing target high-crime areas and ignore precinct boundaries. Research has long 
understood the salience of micro places in shaping crime, but less is known about how local char
acteristics shape policing. It is likely that police behaviour, like criminal behaviour, varies greatly 
by place. In this study, we examine the 77 precincts of the New York City Police Department 
(NYPD) to determine if arrest rates differ across precincts, thus providing insight into potential 
arresting practice differences among officers in different precincts.

This is a difficult question to answer because the regions each police precinct covers are different 
from one another with respect to important demographic and criminological variables. One pre
cinct might have different low-level arrest rates than another because it has higher crime rates, 
more targets for theft, or more transient populations. Therefore, we have to isolate the effect of 
the police precinct practices or policies themselves. Randomization is the gold standard for draw
ing causal conclusions, but while these are occasionally available in the criminology literature to 
evaluate policies like hot spots policing (Puelz et al., 2022), in many scenarios, they are not avail
able or feasible. When evaluating the impact of police precinct practices, we cannot randomize in
dividuals to a police precinct by forcing them to live or work in certain areas of a city. The ubiquity 
of observational studies has led to a wide range of approaches to estimate causal effects under as 
weak of assumptions as possible. Common approaches are difference-in-difference estimators 
(Ashenfelter & Card, 1984; Lechner, 2011), the regression discontinuity design (Cattaneo 
et al., 2019; G. W. Imbens & Lemieux, 2008; Thistlethwaite & Campbell, 1960), interrupted 
time series analysis (Bernal et al., 2017; Cook et al., 1979), and synthetic control analysis 
(Abadie et al., 2010), among others. In the context of policing and criminology, these ideas 
have been used to address important issues, such as whether increased oversight of police leads 
to increases in crime and decreased effectiveness of the police force (Ba & Rivera, 2019), quanti
fying the impact of a penalty system for drivers in Italy on traffic incidents and traffic-related fa
talities (De Paola et al., 2013), or estimating the heterogeneous effects of neighbourhood policing 
(Antonelli & Beck, 2023; Beck et al., 2022).

In this study, we focus on the regression discontinuity design and its extensions to geographic 
settings and point process data. For an in-depth review of standard regression discontinuity de
signs and implementation details, see G. W. Imbens and Lemieux (2008) and Cattaneo et al. 
(2019). The traditional regression discontinuity design occurs when treatment assignment is either 
partially or completely determined by a pretreatment covariate, typically referred to as the running 
or score variable. There exists a cut-off value of this running variable, above which units receive 
treatment, and below which units receive the control. The fundamental idea is that units within a 
small distance around the cut-off value form a locally randomized experiment (Mattei & Mealli, 
2017). The estimand of interest is a local treatment effect at the cut-off value, and nearby obser
vations are used to extrapolate what would happen both under treatment and control at this 
boundary value. This approach has been extended to multivariate running variables such as the 
results of two types of educational tests (Matsudaira, 2008). A specific example of a bivariate run
ning variable is found in the geographic regression discontinuity design (GeoRDD), where latitude 
and longitude are used to determine treatment assignment. Important aspects specific to the geo
graphic design are highlighted in L. J. Keele and Titiunik (2015). This design has been used to es
timate the effect of private police departments on crime (MacDonald et al., 2016), the impact of 
voter initiatives on voter turnout (L. Keele et al., 2015), the effect of the Civil Rights Act of 1875 
(Harvey, 2020), and whether school districts impact housing prices (Rischard et al., 2021).

Regression discontinuity designs rely on assumptions that the potential outcomes are smooth at 
the cut-off value or that treatment behaves as if it were randomized within a window around the 
cut-off value. To assess the validity of these assumptions, a number of falsification tests have been 
proposed. A negative control approach is to treat an observed covariate as an outcome, where we 
know the treatment should not affect this covariate, and estimate the treatment effect on this 
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covariate to see if the approach correctly estimates a null association (Lee et al., 2004). Another 
issue is that the running variable can be manipulated by subjects if they are aware of the cut-off 
value, and this can be evaluated by checking if the distribution of the running variable is continu
ous at the cut-off (Cattaneo et al., 2017; McCrary, 2008). Other approaches examine the sensitiv
ity of results to bandwidth selection (Lemieux & Milligan, 2008), as robustness of results to this 
choice provides increased belief in the resulting findings.

In this work, we develop two key contributions to the literature on GeoRDDs. For one, we ex
tend the GeoRDD literature to settings where the outcome is a point process, and causal estimands 
and assumptions are defined in terms of intensity surfaces. Standard GeoRDD approaches do not 
apply here because they are designed for settings with a numeric outcome (such as voting behav
iour or test scores) measured at spatial locations. In contrast, we do not have a numeric outcome; 
instead, our outcome is the location of events, and we are interested in studying the expected num
ber of events in specific subsets of the spatial domain. This necessitates a modification of key as
sumptions and estimands, and relies on distinct estimation strategies that we develop. Our second 
contribution, which is applicable to general GeoRDD settings, not just the point process one seen 
here, is that we provide valid hypothesis tests for causal estimands under certain violations of ex
isting assumptions typically utilized in the GeoRDD. By using a novel resampling scheme, our ap
proach allows for violations of the assumptions that treatment is as if randomized within a 
window around the cut-off point of the running variable, or that the potential outcomes are 
smooth at the cut-off. We exploit a large spatio-temporal data set of crime and arrest data in 
New York City (NYC) to find streets that behave similarly to precinct boundaries, but by defin
ition have no effect of police department practices as they are fully contained within a single police 
precinct. We use these streets to construct a null distribution that accounts for violations of local 
randomization or continuity assumptions and provides a valid hypothesis test of individual pre
cinct effects, as well as a test for the overall degree of variation in policing across NYC.

The relevant R code and data for reproducing all numerical results presented in this article are 
available at ebkendall.github.io/research.html.

2 Policing data in NYC and preliminary analyses
Our analyses draw on two data sources made public by the NYPD: NYPD Arrest Data and NYPD 
Complaint Data. Both provide information at the incident level with geolocated, address data for 
all arrests and crimes reported to the police in the years 2010–2018. The NYPD is divided into 77 
police precincts, each patrolling a particular geographic area of the city. We exclude the precinct 
corresponding to Central Park, which does not have any residents, leading to 76 precincts in our 
analysis. Our goal is to use these data to understand whether there is variability in arresting prac
tices across police precincts in NYC, and whether individuals are more or less likely to be arrested 
depending on which precinct’s police force they are exposed to. Before describing our problem in 
more detail, it is important to emphasize that police precincts can refer to both geographic areas, as 
well as the police organizational unit that polices that geographic area. Whenever we refer to ef
fects of police precincts, we are referring to effects of decisions, policies, or practices of the police 
department within that precinct, not the effects of the geographic area itself. This is a well-defined 
treatment variable of interest to study, because police departments have different police 
commanders, different policies, and other features that may affect arrest rates.

Using these data, we can visualize both when and where arrests occur as well as the precinct 
from which the arresting officer originates. Figure 1 highlights the arrest data for Precinct 77 in 
NYC during the year 2014, both with and without the roadmap of the city overlaid on the figure 
using the R package ggmap (Kahle & Wickham, 2013). This figure reveals features of the data we 
will leverage in our approach to inference. Both arrests and crimes fall directly on streets, and are 
not spread out across the entire spatial domain. Note that because the observed spatial locations 
are restricted to a grid, a single spatial location can correspond to multiple arrests or crimes. 
Additionally, precinct boundaries are streets themselves, and there are arrests that fall directly 
on these boundaries.

Suppose that we are interested in estimating whether there is a difference in arresting practices 
between two neighbouring police precincts. Figure 2 plots the number of arrests divided by the 
number of crimes within each precinct, and we can see significant variation across police 
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precincts. This could be driven by many factors, such as the types of crime committed within 
each precinct. Alternatively, it could be that separate police precincts have distinct policies or 
practices that lead to such variation, and our goal is to study whether it is the latter. 
Formally, we want to assess whether there is a causal effect of police precinct on arrest rates. 
Given the lack of rich covariate information, but a high degree of spatial resolution, one might 
choose to use a GeoRDD to estimate the effect of police precincts between two neighbouring re
gions. The GeoRDD leverages the fact that nearby areas should be similar with respect to im
portant unobserved characteristics that are associated with arrest rates. In this context, this 
assumption would be satisfied if areas on either side of the border between the two precincts 
are similar to each other. If individuals generally do not choose where to live based on which 
police precinct their home falls in, which is a reasonable assumption for many police precinct 
boundaries, then differences in arrest rates would be attributable to differences in police precinct 
practices.

Existing GeoRDD methodology does not immediately apply to the point process data seen here. 
We formalize estimands and methodology for estimation in this setting in Section 3, but as a pre
liminary analysis we can draw a buffer around the border of two precincts and study the difference 
in arrest rates made by each precinct within the buffer over time. An illustration of the setup can be 
found in Figure 3, where arrests are colour-coded based on the arresting officer’s precinct. If there 
is no variation in policing practices across precincts, then under certain causal assumptions 

Figure 1. Arrest locations from officers of Precinct 77 in New York City (NYC) during the year 2014.

Figure 2. Number of arrests divided by the number of crimes over the entire study period, separated by precinct.
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detailed in Section 3, we would expect to find a significant difference in arresting practices between 
two neighbouring precincts with probability α, where α is the prespecified type I error. Given that 
there are 144 precinct–precinct borders of interest, we would expect to see roughly α × 144 signifi
cant associations and the distribution of p-values across these tests to be roughly uniformly distrib
uted if police precincts do not affect arrest rates.

Suppose buffers with radius lengths of 300–1,000 feet are drawn around each border. Then, the 
number of arrests made by each of the two precincts within the bounds of the buffer zone is 
counted so that we can test if there is a significant difference in arrest counts. Specifically, if we 
let (Y0, Y1) be the number of arrests on the two sides of the border, we expect that Y0 ∼ 
binomial(Y0 + Y1, 0.5) under the null hypothesis of no precinct effect. We can use this result to 
test the hypothesis that the expected number of arrests on either side of the boundary is the 
same. Figure 4 shows the distribution of p-values from this test for a 600-foot buffer, as well as 
the percentage of rejections out of 144 borders as a function of the buffer width. We see that 
92.4% of the p-values are <.05 when we use a buffer radius of 600 feet, with similar percentages 
for other buffer widths, and the p-value histogram is far from uniform. This may occur because: 
(1) there truly are large differences in arresting practices across NYC police precincts, (2) either the 
causal assumptions do not hold or the statistical test is invalid, or (3) some combination of 
these two.

Figure 3. Arrest locations near the border of Precincts 71 and 77.

Figure 4. Distribution of p-values across all 144 borders at a buffer width of 600 feet (left) along with the per cent of 
rejections as a function of buffer size around the border (right) for counts of arrests.
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2.1 Negative control analyses
While we cannot know whether the significant effects on arrest rates are due to a true causal ef
fect of police precincts or violations of key assumptions, we can examine similar data that is 
known to have no police precinct effect. As a negative control outcome, we consider the 2015 
Street Tree Census data set provided by NYC Open Data. This data set provides the location 
of all trees in NYC, and has a similar structure to the crime/arrest data, as all locations are re
corded at street locations. Clearly, police departments do not decide where to place trees in a 
precinct, which might lead one to assume that the difference in tree counts on either side of 
any two bordering precincts is expected to be small. This intuition is not correct in this instance, 
as Figure 5 shows very similar results to that of the arrest data. The p-value distribution across 
precinct boundaries is highly skewed, and the percentage of significant findings, even for small 
buffer widths of 300 feet, is well above the desired type I error rate. This motivates the need to 
develop a methodology that is robust to violations of assumptions on the similarity of the pop
ulations on both sides of precinct boundaries, and that is able to provide valid inference in 
this setting.

3 Causal inference for spatial point processes with GeoRDDs
The observed data on our outcome of interest consists of a set of geographic locations correspond
ing to each arrest in NYC between 2010 and 2018. Our data can be thought of as being generated 
from a point process, in that an arrest will randomly occur at some time point, and at a given lo
cation. Since we are interested in studying variability in arrest rates across space, rather than time, 
we aggregate across the temporal component to focus solely on space. We denote geographical co
ordinates by S = (S1, S2), which correspond to latitude and longitude. Therefore, the observed out
comes are given by S = {S1, S2, . . . , SN} where S1, S2, . . . , SN represent each location at which an 
outcome is observed (e.g. where each arrest occurs). We use |S| = N to denote the cardinality of 
this set, which corresponds to the number of events in the entire spatial domain studied. To reiter
ate, standard GeoRDD estimands and inferential strategies do not apply here because we do not 
observe a numeric outcome value at these locations. Instead, the outcome is the location of arrests 
in NYC, and its distribution is governed by an unknown point process.

At times, we focus on specific subregions of the entire spatial domain and therefore we can de
fine corresponding region-specific quantities. Denote R as a subregion under study, such as the re
gion within 300 feet of the boundary between two precincts. Let Y(R) =

􏽐N
i=1 1(Si ∈ R) represent 

the number of outcomes that occurred in region R. We assume that our data follow an inhomo
geneous point process (Daley & Vere-Jones, 2003) with intensity function given by λ(s), where 
s denotes a spatial location. Specifically, this implies that

Figure 5. Distribution of p-values across all 144 borders at a buffer width of 600 feet (left) along with the per cent of 
rejections as a function of buffer size around the border (right) for the negative control outcome looking at counts of 
trees.
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E(Y(R)) = ∫ Rλ(s)ds, (1) 

for any region R in the domain of interest.

3.1 Single border estimands
Now that we have introduced notation relevant to our problem, we can formally define po
tential outcomes and causal estimands in the context of spatial point process data. Our inter
est is in whether arrest rates differ across police precincts throughout NYC, and we can first 
answer this question by focusing on two adjacent precincts at a time, which we refer to as pre
cinct 0 and precinct 1. Note that most precincts have more than one neighbouring precinct; 
therefore, in the event that a precinct has, say, four neighbours, then there exists four distinct 
estimands for each adjacent precinct pair. We can then extend these ideas to all adjacent pre
cinct pairs in NYC in Section 3.8. First, let B denote the spatial boundary separating precinct 0 
and precinct 1 (i.e. the border between the two precincts). Further, define a distance function 
d(s, B), which is the shortest distance between a point in space, s, and the boundary, B. Next, 
define the treatment variable T(s) to be an indicator of whether a location is policed by police 
precinct 0 or 1. Clearly, this is a deterministic function of s as T(s) = 1(s ∈ precinct 1). This is 
referred to as a sharp regression discontinuity design as the forcing variable (s in this setting) 
completely determines the treatment assignment (Trochim, 1990). With both the distance 
metric and treatment defined, we can more formally characterize the regions relevant to our 
study. Define

Rδ,0 = {s : d(s, B) < δ, T(s) = 0},

Rδ,1 = {s : d(s, B) < δ, T(s) = 1}.

Intuitively, Rδ,0 is the region within distance δ of the boundary, B, on the side of precinct 0, 
with an analogous interpretation for Rδ,1 and precinct 1. Then, denote Rδ to simply be the 
combined area of Rδ,0 and Rδ,1 (i.e. the total region within distance δ of boundary B). 
Figure 6 provides an illustration of these terms.

We frame our problem and the regression discontinuity design within the potential outcomes 
framework (Rubin, 1974). We define S1 to be the set of locations with an arrest had every area 
been exposed to policing by police precinct 1 and S0 be the corresponding quantity for precinct 
0. Accordingly, we can define Y1(Rδ) to be the number of outcomes we would observe in region 
Rδ if exposed to policing by precinct 1 and Y0(Rδ) be the same quantity for precinct 0. We assume 
that these potential outcome point patterns come from inhomogeneous point processes with inten
sity functions λ1(s) and λ0(s), respectively. Precincts 0 and 1 could have different observed arrest 
rates for a number of reasons, many of which are not due to a causal effect of police precincts. 
One area could have higher crime rates, different types of crimes committed with different clear
ance rates, or a different demographic of individuals in the population that live there. However, 
since precinct boundaries are defined on streets and many individuals are unaware of which pre
cinct they reside in, we can focus our analyses on regions close to the boundary between the two 
precincts (i.e. Rδ for sufficiently small δ) because the individuals on either side of the street are more 

Figure 6. Illustration of the components surrounding the border.
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likely to be similar and neighbourhood characteristics should be more comparable. In particular, 
we examine a local average treatment effect defined by

θ(Rδ) = E(Y1(Rδ) − Y0(Rδ)) = ∫ Rδ
{λ1(s) − λ0(s)}ds. (2) 

This treatment effect is local in the sense that it is the effect of being exposed to policing practices of 
precinct 1 versus precinct 0, but only in the region near the boundary, defined by Rδ. This is stand
ard in the regression discontinuity literature where treatment effects are typically identified at, or 
near, the cut-off of the forcing variable.

Alternative estimands that provide more detailed information about the nature of the treatment 
effect are also of interest. One such estimand, which acknowledges that the treatment effect may 
vary spatially across the boundary of interest, can be defined as

τ(b) = λ1(b) − λ0(b) ∀ b ∈ B. (3) 

This represents the difference in the underlying point process intensity surfaces at all locations on 
the boundary of interest, and is an extension of estimands seen in prior spatial regression discon
tinuity designs (L. J. Keele & Titiunik, 2015) to the point process setting. This estimand allows for 
heterogeneity of the treatment effect across the boundary of interest. We can also aggregate this 
effect across the boundary using similar ideas as in L. J. Keele and Titiunik (2015) and 
Rischard et al. (2021) by defining the following:

τ =
∫ s∈Bw(s)τ(s)ds

∫ s∈Bw(s)ds
, (4) 

where w(s) is a weight function that assigns weight to each point on the boundary. Throughout, we 
assign equal weights, w(b) = 1 for all b, but the ideas used hold for any choice of weights. Other 
weights such as those that assign weight proportional to population size, or weights that minimize 
the variance of the estimated treatment effect, may also be of interest, though we refer readers to 
Rischard et al. (2021) for a broader discussion around this choice. Similar to (2) this provides a 
local average treatment effect at the boundary, but we will see in subsequent sections that the iden
tification assumptions and estimation strategies are slightly different between the two estimands. 
In general, we recommend using the point process estimand in equation (3) if one is interested in 
spatial heterogeneity of the effect across the border, and the average estimand in (4) otherwise. In 
subsequent sections, we will see reasons for choosing these estimands over θ(Rδ). In particular, the 
identification assumptions are arguably more plausible and easier to justify (see Section 3.2), and 
the selection of tuning parameters is more straightforward for estimating these estimands (see 
Section 3.5). Despite this, we still present results and discussion around the estimand in (2) as it 
is easier to study and provide intuition for mathematically, in addition to being computationally 
less demanding to estimate as it does not require estimating intensity surfaces or implementing 
cross-validation.

3.2 Identifying assumptions
The main idea behind the regression discontinuity design is that by looking in a close window 
around the boundary, the two regions on either side of the boundary are very similar with respect 
to all important features except for which precinct’s police department they are being policed by. 
The impact of important confounding variables associated with arrest rates that may differ be
tween the two precincts should be mitigated when looking within small geographic areas, as 
long as the confounding factors are continuous at the boundary between the two precincts. We 
can therefore compare outcomes on either side of the boundary and attribute differences to the 
effect of the police departments in each precinct. Here, we formalize this notion by explicitly writ
ing down the assumptions by which the regression discontinuity design is able to identify the afore
mentioned local average treatment effects from the observed data. First, for ease of exposition, we 
show these assumptions in the absence of additional covariate information. We discuss the role of 
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covariates in detail in Section 3.6, and weaken the following identification assumptions to incorp
orate covariates in online supplementary material, Section 2. Additionally, in what follows, we 
aim to weaken these assumptions and provide valid hypothesis tests even when some of these as
sumptions are violated.

The two most commonly used assumptions unique to the regression discontinuity design are local 
randomization assumptions or assumptions on continuity of potential outcomes at the cut-off of the 
running variable. Local randomization states that treatment assignment is independent of the poten
tial outcomes when looking only within a small window around the cut-off of the running variable 
(Mattei & Mealli, 2017). Continuity of potential outcomes is the most commonly used assumption 
in the regression discontinuity literature and specifies that the conditional mean of the potential out
comes under both treatment and control are continuous functions in the running variable 
(G. W. Imbens & Lemieux, 2008). Here, we extend these assumptions to the spatial point process 
setting and show how they can be used to identify θ(Rδ) and τ(b), respectively. First, we detail the 
assumptions needed to identify θ(Rδ), which are given in Assumptions 1 and 2.

Assumption 1 Consistency of potential outcomes.

Yt(Rδ,t) = Y(Rδ,t) for t = 0, 1.

Assumption 2a Constant integrated intensity functions.

E(Yt(Rδ,1)) = E(Yt(Rδ,0)) for t = 0, 1.

Assumption 1 is a standard assumption required to link our observed data to the potential out
comes, and ensures that there exists only one version of treatment and that the potential outcomes 
for one region do not depend on treatment values of other regions (no interference). We believe 
this assumption is plausible in our study as we do not expect arrest rates in one region to depend 
on the police department practices of other regions. The second assumption is arguably stronger 
and states that for both the control and treated potential outcome point processes, the expected 
number of events that fall on one side of the boundary within a distance of δ is the same regardless 
of which side of the boundary is being looked at. This is a point process extension of local random
ization assumptions used previously, and is needed because we need to use what happened under 
the precinct 0 side of the border to infer what would happen on the precinct 1 side of the border 
had they both been exposed to policing by the police department in precinct 0. As shown in online 
supplementary material, Section 1, under these assumptions we can identify the effect of interest as

θ(Rδ) = 2E[Y(Rδ,1) − Y(Rδ,0)], 

which is a fully observable quantity. Also of interest is τ(b), which represents the local treatment 
effect at location b ∈ B. To identify this effect, we need a point process extension of the conditional 
continuity assumptions used in regression discontinuity designs, which is given in Assumption 2b.

Assumption 2b Continuity of potential outcome intensity surfaces.

lim
s→b

λt(s) = λt(b) for t = 0, 1.

This assumption guarantees that if we see a discontinuity at b in the observed intensity surfaces, 
then it can be attributed to an effect of the treatment, which also has a discontinuity there. Online 
supplementary material, Section 1 shows that τ(b) is identified under Assumptions 1 and 2b as

τ(b) = λ1(b) − λ0(b) = lim
s→b1

λ(s) − lim
s→b0

λ(s).

Note here that we use the notation lims→b1 to denote a limit that approaches the boundary 
location b from the precinct 1 side of the boundary, with analogous notation for precinct 0. 
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Assumptions 2a or 2b, depending on which estimand is being studied, is arguably the most crucial 
assumption needed for identification and the most likely one to not hold in practice. It could fail, 
for instance, if people decided where to live based on the geographic boundary, and therefore the 
two sides of the border would not be comparable with respect to important characteristics that 
drive arrest rates, such as socioeconomic or criminological variables. Due to this, in Section 3.4, 
we detail a procedure to test the null hypothesis of no treatment effect that is robust to certain vio
lations of these assumptions. Additionally, in Section 3.6 and online supplementary material, 
Section 2, we detail how additional covariate adjustment can be incorporated to weaken these 
assumptions.

3.3 Estimation of treatment effects
Before detailing our strategy for hypothesis testing that is robust to certain violations of 
Assumptions 2a or 2b, we must first discuss estimation strategies for the spatial regression discon
tinuity design with point process data. Estimation of θ(Rδ) is straightforward for a given choice of 
δ, as a natural estimator is simply a plug-in estimator given by 􏽢θ(Rδ) = 2(Y(Rδ,1) − Y(Rδ,0)), where 
Y(Rδ,t) is the number of events on the precinct t side of the boundary. In order to estimate 
τ(b) = lims→b1 λ(s) − lims→b0 λ(s), we fit two separate models, one for each of the two limits of inter
est. For lims→b1 λ(s), we utilize only the data on the precinct 1 side of the boundary, and fit a model 
to estimate the intensity surface of the point process on that side of the boundary. We can then 
extrapolate this intensity surface to estimate the intensity surface at b. Intensity surface estimation 
for this analysis utilizes the methodology implemented in the R package spatstat (Baddeley & 
Turner, 2005; Baddeley et al., 2015). Specifically, let W be a two-dimensional spatial window with 
which we define an intensity surface over. Further, let lj represent a distinct spatial location of an 
observation within W for j ∈ {1, . . . , J}, and mj represents the weight associated with lj (e.g. if 
there exists four observations located at lj, then mj = 4). Then, at any given point s ∈ W, the in
tensity surface value, λ(s), is estimated using a fixed-bandwidth kernel estimate given by

􏽢λ(s) =
􏽐J

j=1 κ(lj − s) ·mj

e(s)
, 

where e(s) = ∫ Wκ(v − s) dv and κ(·) is the kernel of an isotropic Gaussian density function. The 
variance (i.e. bandwidth) for this density, denoted by σ2, is what defines the spatial smoothness 
of the intensity surface. The choice of σ2 is one that empirically minimizes the mean squared error 
(MSE) of the estimator for the local intensity surface about s. The MSE for the estimator is derived 
from Diggle (1985) and Berman and Diggle (1989), where it is assumed that the point process is a 
stationary, isotropic Cox process, allowing the MSE to be written as a function of only the 
smoothness parameter σ2. Given their importance for all of the estimands considered, we discuss 
smoothness parameters such as σ2 in more detail in Section 3.5.

3.4 Resampling to obtain robust test of null treatment effect
Of major concern when using the regression discontinuity design is that the aforementioned as
sumptions do not hold. While Assumption 1 is reasonable in many applications, Assumptions 
2a and 2b are relatively strong and can fail in certain scenarios. For simplicity, in this section, 
we focus attention on θ(Rδ) and Assumption 2a, but identical ideas hold for τ(b) and 
Assumption 2b. Violations of Assumption 2a are problematic as they can lead to bias in the esti
mated treatment effects and inflation of type I error rates, which could potentially be leading to the 
results seen in Figure 4. For NYC, in particular, this assumption would be violated if the commu
nities on either side of the boundary are systematically different with respect to unmeasured var
iables that affect the potential outcome distributions. While we can reduce this by forcing δ to be as 
small as possible, neighbourhoods in NYC can change drastically over short geographic distances. 
In other applications of GeoRDDs, units may choose to live on one side of the boundary due to the 
boundary itself, which can also violate this assumption. Our interest will be in testing the null 

10                                                                                                                                                 Kendall et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/advance-article/doi/10.1093/jrsssa/qnaf128/8237261 by guest on 23 Septem
ber 2025

http://academic.oup.com/jrsssa/article-lookup/doi/10.1093/jrsssa/qnaf128#supplementary-data
http://academic.oup.com/jrsssa/article-lookup/doi/10.1093/jrsssa/qnaf128#supplementary-data


hypothesis H0 : θ(Rδ) = 0, and our goal will be to create a hypothesis test that has valid type I error, 
even in the presence of certain violations of Assumption 2a.

We develop a two-step procedure to test this null hypothesis. The first step is to define a test stat
istic for this hypothesis, while the second step involves resampling new boundaries in NYC to es
timate the distribution of this statistic under the null hypothesis of no precinct effect. For step one, 
we define

Z = Y(Rδ,1) − Y(Rδ,0)
􏼌
􏼌

􏼌
􏼌, (5) 

which is the difference in the number of events between regions Rδ,1 and Rδ,0. Clearly, this test stat
istic will be large when there are differences in policing practices by police departments in precincts 
1 and 0. One difficulty we must overcome is that this test statistic does not have a known distri
bution that can be used for inference. A larger problem, however, is what happens when 
Assumption 2a does not hold. Even if the distribution of this test statistic is known under the 
null hypothesis, violations of Assumption 2a will lead to larger values of Z, and we must account 
for this to obtain valid inference.

Our goal is to estimate the null distribution of our test statistic, and we refer to the cumulative 
distribution function (CDF) of this distribution by F0. To estimate this null distribution, we can 
sample new precinct boundaries that behave similarly to the original precinct boundary of interest. 
The key difference is that these new boundaries, which we call null streets, are fully contained 
within a single precinct and therefore have no precinct effect, i.e. θ(Rδ) = 0 by design. 
Fortunately, we have a very rich data set that includes information on all of NYC, not just at 
the boundaries of the precincts, and we can leverage this data set to find a large number of null 
streets. An illustration of this for one precinct can be found in Figure 7, and a map showing streets 
across all of NYC can be found in online supplementary material, Section 7.

Assuming we can find a large number, B, of streets that are not near precinct boundaries, we can 
estimate the test statistic at each null street and use the distribution of these statistics as an estimate 
of F0. Note that our procedure will be valid for any test statistic, though we will proceed with Z 
from (5). We denote these test statistics by Zb for b = 1, . . . , B. We can then estimate the null dis
tribution via 􏽢F0(a) = 1

B

􏽐B
b=1 1(Zb < a), which allows us to perform hypothesis testing. The intu

ition behind using this test to provide more robust hypothesis testing is that if Assumption 2a
does not hold at the boundary of interest, then it likely does not hold in other areas of NYC as 

Figure 7. The red streets in Precinct 83 are ones that could potentially be used as null streets. The buffers (blue) are 
drawn around three potential null streets to illustrate how they meet the qualification for being completely contained 
in one precinct.
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well. For instance, there could be substantial spatial variability in individuals across NYC that 
changes far more locally than distances of δ. We would not be able to account for this with ob
served covariates that are available only at the census-tract level, which is not sufficiently spatially 
resolved. However, it is likely that this variability is not unique to precinct boundaries, and that 
this variation also affects estimates at our resampled locations as well. By using these resampled 
locations, we are no longer relying on Assumption 2a holding to obtain a valid hypothesis test, 
but rather a modified assumption at the resampled locations. To provide intuition for this, let 
us first simplify the test statistic to be Z = Y(Rδ,1) − Y(Rδ,0). Under Assumption 1, the mean of 
this difference can be written as

E(Z) = E[Y(Rδ,1) − Y(Rδ,0)]

= θ(Rδ) + E[Y0(Rδ,1) − Y1(Rδ,0)].

If we further adopt Assumption 2a, we have that E(Z) = θ(Rδ)/2 and it is therefore zero under the 
null hypothesis of no precinct effect. If, however, Assumption 2a is violated in the sense that 
E[Y1(Rδ,1) − Y1(Rδ,0)] = E[Y0(Rδ,1) − Y0(Rδ,0)] = μ, we have that

E(Z) = θ(Rδ)/2 + μ.

This shows that if there are structural differences on the two sides of the boundary with respect to 
the potential outcomes, this will inflate our test statistic. In particular, under the null hypothesis of 
no treatment effect, this expected difference becomes μ instead of zero, which can lead to inflated 
type I error if this is not taken into account. To describe when our procedure can lead to valid in
ference, we first define

Ut(δ, B) = Yt(Rδ,1) − Yt(Rδ,0) for t = 0, 1, 

where again B is used to denote the fact that these are at the boundary of interest. We also let 
Ut(δ, B) ∼ G for some distribution G under the null hypothesis of no treatment effect. If we let 
B∗ represent a null street boundary, then we make the following assumption:

Assumption 3 The null streets’ test statistics match those of the precinct boundary loca
tions under the null hypothesis, in the sense that Ut(δ, B∗) ∼ G for t = 0, 1.

If this assumption holds and the null streets have similar levels of violations of Assumption 2a, 
then the test statistics found at the null streets should approximate the true null distribution F0 and 
we can construct rejection regions for our test using the relevant quantiles of the estimated null 
distribution. Assumption 2a makes the restrictive assumption that E(Ut(δ, B)) = 0, while 
Assumption 3 allows for violations in the sense that E(Ut(δ, B)) = μ as long as we can find null 
streets with similar violations. We see in Section 3.7 that this is actually a stronger assumption 
than what is required for valid inference. If the null streets have larger violations of Assumption 
2a than at the precinct boundaries, then we should obtain valid, albeit conservative, inference. 
Note that while we argued for this procedure for testing θ(Rδ) = 0, the same ideas hold for testing 
whether τ(b) = 0. We would simply need to change our test statistic to be 
Z = | lims→b1􏽢λ(b) − lims→b0􏽢λ(b)|, and all other ideas remain unchanged.

3.5 Choosing smoothing parameters
Note that for both estimands θ(Rδ) and τ(b), there exist a parameter that governs how localized 
estimation is over space. For θ(Rδ), the distance δ dictates a bias-variance trade-off for our estima
tion strategy because decreasing δ makes Assumption 2a more plausible and reduces bias in esti
mation of the causal effect, however, it reduces the amount of data we have to estimate the 
treatment effect, thereby increasing variability. For τ(b), the spatial smoothing parameter σ2 dic
tates a similar bias-variance trade-off, where a smoother intensity surface, λ(b), will have lower 
variability, but may induce bias by using information too far from the boundary of interest.
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Related issues arise in standard regression discontinuity designs or GeoRDDs that utilize local 
linear regression for estimation, which contains a crucial bandwidth parameter. Selection of the 
bandwidth parameter has seen significant attention in the regression discontinuity design litera
ture with a focus on finding optimal (in terms of MSE) bandwidth parameters (G. Imbens & 
Kalyanaraman, 2012) or performing inference in a way that accounts for bias in treatment ef
fect estimation (Calonico et al., 2014a, 2014b). One key issue in this literature is that con
structing valid confidence intervals when using cross-validation or MSE-optimal choices of 
bandwidth parameters is difficult because of the asymptotic bias in these estimators caused 
by oversmoothing (L. J. Keele & Titiunik, 2015). One can attempt to undersmooth by choos
ing a smaller bandwidth than what is chosen by cross-validation, but the degree of under
smoothing is generally not known. Bias-corrected confidence intervals have been developed 
in standard regression discontinuity designs, but this theory has not been developed for the 
point process setting seen here. Fortunately, our resampling procedure described in Section 
3.4 helps resolve some of these issues. For estimation of τ(b), we recommend choosing the 
smoothing parameter σ2 that minimizes the MSE of the intensity surface estimator. This 
should lead to good estimates of the intensity surfaces that balance competing interests of us
ing enough data, while also focusing in a close window around the boundary. In our case, the 
MSE-optimal σ2 is determined by a numerical minimization of the MSE estimate defined in 
Diggle (1985) and Berman and Diggle (1989). Although traditional cross-validation through 
resampling (e.g. leave-one-out cross-validation) could be used as another model-selection 
strategy, we find that for the size of our data it is computationally prohibitive. 
Additionally, both the spatial dependencies in the data as well as the fact that our data consist 
of only one realization of the point process, makes the independence assumption for cross- 
validation unreasonable. Hence, an area to explore in the future is applying novel cross- 
validation strategies that account for spatial dependencies, such as the work of Cronie and 
Van Lieshout (2018) and Cronie et al. (2024), to improve the choice of σ2 thus improving 
the overall intensity surface estimate. In any case, while the possibility of undersmoothing 
or oversmoothing exists, it is expected that these issues occur at both the boundaries of inter
est and the null streets in a similar manner, thus leading to valid hypothesis tests.

Finding an optimal choice for δ to be used when studying θ(Rδ) is less clear, however, because 
there is no natural way to perform cross-validation with respect to δ. Nonetheless, we can provide 
general guidance for the choice of this parameter. A general rule of thumb is to set δ to be a small 
value, which has two benefits in our framework. For one, it makes Assumption 2a more plausible 
than larger values of δ. It also has an advantage with respect to the resampling procedure described 
in the previous section, which is that smaller values of δ will have more available null streets to 
select from, which can lead to null streets being more similar to the precinct boundaries of interest. 
This is because null streets, and their corresponding buffer regions, must be fully contained within 
a single precinct, but this becomes less likely as the size of the buffer region grows. One approach 
we recommend to determine what a ‘small value’ for δ means in any application is to first consider 
the spatial surface over which the point process lies. In our case, we know all observations fall 
along street lines. Hence, we can look at the distances between neighbouring streets (as quantified 
by the distance between street midpoints) and compute the minimum distance between each street 
and its neighbours within each precinct. We can then set δ to be the 95%-quantile of the distribu
tion of the minimum distance from streets to their nearest neighbouring street. In our application 
in NYC, the 95%-quantile is 273.25 feet, and therefore we recommend δ = 300 as it is greater than 
most minimum distances between neighbouring streets, while still small enough to make 
Assumption 2a more plausible. Another way in which data can be used to select δ is if additional 
information on a negative control variable is available, such as in our study of tree locations in 
NYC. One can apply the resampling procedure for all possible values of δ and choose the value 
of δ that leads to the desired type I error rate.

In general, however, we recommend finding a small value of δ as described above and 
then performing inference for a range of small to moderate values of δ (we consider 
δ ∈ {300, 400, . . . , 1, 000}). This assesses whether results are consistent across these values, which 
would increase belief in the overall findings. Additionally, our testing procedure should be fairly ro
bust to the choice of δ (or σ2). In the NYC policing analysis in Section 5, we apply our procedure for a 
range of smoothness parameters and find relatively consistent results across all values explored.
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3.6 The role of covariates
As with nearly any observational study aiming to study causal effects, we must discuss the different 
ways in which covariates are accounted for. This is particularly important in the present setting, as 
there are multiple manners in which covariates can be included in our analysis, and it is important 
to distinguish among these. There are two distinct places that covariates can be incorporated: (1) 
the identification assumptions and corresponding estimation strategy described in Sections 3.2
and 3.3, and (2) utilizing covariates to find the best null streets for estimating the null distribution 
in Section 3.4. While commonalities exist across these two aspects of our proposed procedure, key 
distinctions remain which are worth spelling out.

3.6.1 Effect on identification assumptions
Before discussing how covariates can be explicitly incorporated into the proposed procedure, we 
must also emphasize that regression discontinuity designs are useful, and so widely used, because 
they implicitly adjust for important confounding variables by design. In the context of spatial re
gression discontinuity designs, if important confounding variables are expected to vary smoothly 
across space, then the GeoRDD eliminates issues stemming from these variables by estimating 
treatment effects at the boundary. If the confounding factors are continuous at the boundary of 
interest, then the potential intensity surface will be continuous as well, and the GeoRDD can iden
tify causal effects even without explicit adjustment for these variables. This logic has led to the re
gression discontinuity design being used in a variety of settings without the additional adjustment 
of covariates. This can be violated, however, in certain settings, such as at county or state lines, 
where important variables might change drastically at the boundary, as different counties have 
better schools, childcare options, or other factors influencing who ultimately decides to live there. 
In the current context of police precinct boundaries, this is expected to be less of an issue as these 
boundaries do not typically coincide with other important government boundaries that influence 
the type of people living in each area. Notably, a recent sociological study titled Upsold investi
gates ‘consumers’ preferences and decision-making in the context of purchasing homes’ 
(Besbris, 2020), and among the NYC home-buyers, police precinct was not a factor considered. 
Similar conclusions were found in a separate, recent book titled Race Brokers (Korver-Glenn, 
2021). It is still possible, however, that police precincts could align with other sub-municipal 
boundaries that do affect where people live. We study this in online supplementary material, 
Section 9 where we find that police precincts do not generally align with other important bound
aries in NYC, which helps justify the assumption that precincts do not typically influence people’s 
residential choices in NYC. Despite our justification above, we acknowledge that this is still an 
unverifiable assumption, which could affect the validity of our results if violated.

If there are still concerns about differences in the distribution of important confounding factors 
on the two sides of the boundary of interest, then additional covariate adjustment can be incorpo
rated to remove these differences, which increases the plausibility of the GeoRDD. In this setting, 
when referring to covariates, we are referring to spatial covariates that describe features of the geo
graphic areas examined. For instance, one might be interested in adjusting for socioeconomic sta
tus if it is thought that socioeconomic status differs drastically on one side of the boundary 
compared with the other. The identifying assumptions for the point process GeoRDD can be re
laxed to hold conditionally on observed covariates. We describe these extensions, the identifica
tion of causal effects incorporating covariates, and the corresponding estimators in detail in 
online supplementary material, Section 2. We do not implement this explicit covariate adjustment 
in our NYC policing analysis in Section 5, because the only covariates available to us are United 
States Census variables, which are constant within Census blocks, and therefore are not spatially 
varying enough to assist in our analysis.

3.6.2 Finding null streets
The second way in which covariates influence our testing strategy, which we do implement in 
Sections 4 and 5, is in the selection of null streets. Assumption 3 states that the distribution of 
test statistics at the null streets and the precinct boundaries of interest should be equal under 
the null hypothesis of no police precinct effect. The distribution of the test statistics can depend 
on a number of covariates, however, and we need to incorporate these into the selection of which 
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streets to use when estimating the null distribution for our test statistics. These covariates may be 
potential confounding factors, such as socioeconomic status, but they need not be. For instance, 
the size of the null street is a potentially important factor to use when selecting null streets as small 
streets will have far fewer data points than large streets, and will subsequently have more variabil
ity in their corresponding test statistics. Given the importance of null streets, we now detail the 
steps taken to find adequate null streets to be used in the estimation of the null distribution for 
a given precinct boundary’s test statistic.

The first step in determining which null streets are ‘similar’ to the boundary of interest is to 
choose features in the data that potentially have an affect on the distribution of the test statistic 
being computed. This step is largely application-dependent and Table 1 shows a list of the different 
covariates used to find null streets for each of the three analyses we perform. Note that for a given 
boundary, there exist two values for each covariate; one on each side of the boundary. As a general 
guideline, the choice of covariate is based on both expert knowledge as well as specific features of 
the data application. For the negative control analysis in Section 5.2, we know the data are ob
served only on streets, so including relevant street information as a covariate is justifiable. For 
the simulation in Section 4, we randomly place data across the entire geographic domain, and 
the data are not restricted to street locations. Therefore, the total area/size of the buffer region 
is now a more relevant covariate to include. Finally, in the NYC policing analysis in Section 5, 
we use the amount of crime as a covariate because it is expected that areas with higher amounts 
of crime will have more arrests, irrespective of which police precinct governs that area. While 
each covariate we included in order to find null streets has a practical justification based on subject 
matter expertise, online supplementary material, Section 4 presents empirical justifications for 
their use by showing the association of these covariates with the magnitude and variability of 
test statistics under the null hypothesis. Additionally, while we use a single numeric feature to 
find null streets in each analysis, this can be extended to using multiple covariates, if it is expected 
that these additional features impact the distribution of the test statistic.

Now, for a given choice of covariate, we can formally describe how it is used to find adequate 
null streets. Let Mi denote the set of null streets for precinct boundary Bi, i ∈ {1, 2, . . . , 144}. 
Further, let tsum(·) denote the sum of the covariate values from both sides of the boundary (e.g. 
the total amount of crime), and let tratio(·) ≥ 1 denote the ratio of the covariate values from 
each side of the boundary (e.g. the ratio of the amount of crime on the two sides of the boundary). 
Then, a street m is considered a null street for Bi (i.e. m ∈Mi) if both c · tsum(Bi) < tsum(m) < (1/c) ·
tsum(Bi) and c · tratio(Bi) < tratio(m) < (1/c) · tratio(Bi). Here, c ∈ (0, 1) measures the degree of simi
larity that a street must have to the boundary of interest to be chosen as a null street. Values of c 
near 1 ensure null streets are very similar to boundary Bi with respect to the variable being con
sidered, though potentially at a cost of reducing the number of available null streets. 
Alternatively, a value of c close to 0 means null streets are less similar to the boundary Bi, but there 
will exist a large number of available null streets. Section 5.1 offers further commentary on choos
ing the value of c to use in our motivating application. Once a value of c is chosen, the null distri
bution for the test statistic at Bi is constructed by computing the test statistic for every m ∈Mi. 
Lastly, the reason for using tsum(·) and tratio(·) can best be explained in the context of the real 
data analysis of Section 5. We choose null streets based on the total amount of crime because areas 
with more people and more events are likely to have lower variability in their corresponding test 
statistics. We also use the ratio of crimes on the two sides of the boundary, because crime likely 
correlates with many important confounding factors that we do not measure, and finding null 

Table 1. The choice of covariate used to find null streets for each application

Data application Covariate/feature

Simulation Buffer region area

Negative control Street length in buffer region

Arrest data Crime locations in buffer region

Note. These covariates are numeric summaries and are distinct for each side of a given boundary.
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streets based on this ratio helps ensure that the null streets have similar violations of Assumptions 
2a or 2b, which makes Assumption 3 more plausible. Given the importance of this choice of co
variate to our resampling strategy, we study it in further detail in the following section.

3.7 Theoretical insights for resampling procedure
In this section, we examine when the resampling procedure will provide valid inference, and pro
vide guidance for choosing the number of null streets B, which is a critical choice for both statis
tical validity and power of the proposed hypothesis tests. Larger values of B should lead to more 
efficient estimates of the unknown CDF F0. However, increasing B also may lead to using null 
streets that do not closely match the boundary of interest and Assumption 3 will not be satisfied. 
For the rest of this section, assume a fixed buffer width δ, though all results will hold regardless of 
the chosen buffer width if Assumption 3 is satisfied. Let Zi represent the test statistic at precinct 
boundary i. Further, let Z(b)

i represent a resampled test statistic for precinct boundary i where 
b ∈ {1, 2, . . . , B}. Next, define Xi to be characteristics associated with precinct boundary i and 
similarly, X(b)

i denotes characteristics for null street b. For simplicity, we let Xi and X(b)
i be univari

ate here, but the same ideas hold for a vector of covariates. Assume under the null hypothesis that 
P(Z ≤ z ∣ X = x) = F(x, z) is the CDF of the test statistic of interest, and f (x, z) represents the cor
responding density function. Note that we are assuming that the distribution of the test statistic 
depends on characteristics X. Potential characteristics in NYC are the length of the border B or 
the ratio of crime rates on the two sides of the border. As noted in Section 3.6.2, the distribution 
of the test statistic in NYC indeed depends heavily on characteristics such as these. For this 
reason, we want to find null streets with similar values of these characteristics, i.e. X(b)

i ≈ Xi for 
b = 1, . . . , B so that Assumption 3 holds, though we quantify this idea more rigorously in 
what follows.

Our first goal of the resampling procedure is to obtain statistical validity and maintain type I 
error control at rate α for our hypothesis test. We can define the true 1 − α quantile of Zi under 
the null hypothesis as Q1−α. Our corresponding estimate of this quantile is given by

􏽢Q1−α = min
􏼚

q :􏽢F(Xi, q) ≥ 1 − α
􏼛

, 

where our estimate of the CDF is given by

􏽢F(Xi, q) =
1
B

􏽘B

b=1

1(Z(b)
i ≤ q).

We use this estimate of the CDF throughout this section, though kernel smoothing can be used to 
improve estimation of the CDF when B is small. In online supplementary material, Section 3, we 
show that the type I error of our procedure is given by

P(reject H0 |H0) = 1 − E􏽢Q
[F(Xi, 􏽢Q1−α)].

This result implies that we can obtain type I error control at level α if

E􏽢Q
[F(Xi, 􏽢Q1−α)] ≥ 1 − α = F(X, Q1−α).

This shows that validity does not rely on an unbiased, or even conservative, estimate of Q1−α. 

Rather we need our estimated quantiles 􏽢Q1−α to be such that on average, the true CDF at our esti
mated quantiles is above 1 − α. Even if we have an unbiased estimator of Q1−α, if it has excessive 
variance, then it might not satisfy the condition above and will lead to anti-conservative inference. 
To gain further intuition into this, we study the properties of our estimator of the CDF, denoted by 
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􏽢F(Xi, q). First, we can look at the mean of this estimator, which we show in online supplementary 
material, Section 3 can be approximated as follows:

E[􏽢F(Xi, q)] ≈ F(Xi, q) +
d

dXi
F(Xi, q) · E(X(b)

i − Xi)

+
d2

dX2
i

F(Xi, q) · E[(X(b)
i − Xi)

2].

This shows that the bias of the estimator is a function of how close the null street covariates X(b)
i 

are to Xi. Therefore, finding null streets that have similar characteristics as the precinct boundary 
of interest is of crucial importance. Of course, if Xi does not affect the distribution of the test stat
istic, then d

dXi
F(Xi, q) = d2

dX2
i
F(Xi, q) = 0 and we have no bias regardless of how similar the null 

streets are. Also of importance is the variance of this estimator, which we show in online 
supplementary material, Section 3 is approximated by

Var[􏽢F(Xi, q)] ≈
1
B

E[F(X(b)
i , q) · (1 − F(X(b)

i , q))]
􏽮

+
d

dXi
F(Xi, q)

􏼒 􏼓2

·Var(X(b)
i )

􏼩

.

One would expect that the variance generally decreases as we increase the number of null streets, 
B. However, this shows an important feature of the resampling procedure, which is that the vari
ance need not necessarily go down as we increase B. This is because increasing B can also increase 
Var(X(b)

i ) by including null streets with very different values of X(b)
i , which leads to an increase in 

the overall variance. These two results show that there is a trade-off involved when choosing B. On 

the one hand, we want to increase B to decrease variability in 􏽢F(Xi, q). On the other hand, we want 
to keep B small enough so that the null streets are closely aligned with the precinct boundary of 
interest in the sense that X(b)

i ≈ Xi, which reduces bias, and potentially reduces the variance of 
the estimate of the CDF. We discuss this trade-off in the context of the NYC data in Section 5.1.

3.8 Global test of variation by precinct
So far, we have focused on performing a hypothesis test at a single border (namely between pre
cincts 0 and 1), but there exists many such precinct borders in NYC. While there is interest in 
knowing whether any two bordering precincts have differential arresting practices, also of interest 
is whether there is any variation across all NYC police precincts. In this setting, we might wish to 
test whether the arrest rates differ by any precinct in NYC. It is difficult to compare any two pre
cincts that are not bordering each other as we would not be able to focus on the border between 
these two precincts and therefore cannot utilize the GeoRDD. For this reason, we restrict our at
tention to assessing whether any bordering precincts have differential policing practices. Focusing 
first on the local average treatment effect within δ of the boundary, let θ(R(i)

δ ) = E(Y1(R(i)
δ ) − 

Y0(R(i)
δ )) be the local treatment effect at boundary i, thus leading to the following hypothesis:

H0 : θ(R(i)
δ ) = 0 for i = 1, . . . , M,

Ha : θ(R(i)
δ ) ≠ 0 for at least one i.

Note that R(i)
δ is defined precisely as Rδ is defined in Section 3.1 except i = 1, 2, . . . , M specifies the 

exact boundary of interest. To perform this hypothesis test, we use a test statistic given by

Z̅ =
1
M

􏽘M

i=1

Zi =
1
M

􏽘M

i=1

Y(R(i)
δ,1) − Y(R(i)

δ,0)
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌.
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Larger values of this test statistic provide additional evidence against the null hypothesis. We can 
use the same resampling procedure described in Sections 3.4 and 3.7 in order to perform inference 
using this test statistic. We approximate the distribution of Z̅ under the null hypothesis using the 

empirical distribution of Z̅
b 

for b = 1, . . . , B. Note that while we focused on the local average 
treatment effect within δ of the precinct boundaries, the same ideas would apply for τ defined in 
(4). Specifically, we could use the resampling procedure to test

H0 : τi = 0 for i = 1, . . . , M,

Ha : τi ≠ 0 for at least one i.

where τi is the estimand defined in (4) applied to precinct boundary i. Similarly, the test statistics Zi 

would be updated to be estimators of τi, which are defined in Section 3.3. Note that while the test 
statistic is an average across all precinct boundaries, another justifiable test statistic would be to 
use maxi Zi, which is analogous to using a minimum p-value over all hypothesis tests (Tippett, 
1931). This statistic may have more power if only a small subset of the precinct boundaries 
have an effect of police precincts.

4 Simulation study
Here, we assess the performance of the proposed approach to testing in the GeoRDD using simu
lated outcome data across NYC. We generate data from four scenarios to evaluate performance in 
a wide range of plausible settings. In each scenario, we generate 1,000 data sets. In each data set, 
we first generate the intensity surface λ(·) of the point process across the surface of NYC. Counts of 
outcomes within any particular region R, such as the area around a precinct boundary, are then 
drawn from a Poisson distribution with mean given by Λ(R) = ∫ Rλ(s)ds. Similar to the negative 
control analysis, simply doing a binomial test to compare the number of simulated counts on either 
side of a boundary leads to invalid results and inflated type I error rates. With this in mind, we run 
our proposed procedure on each of the simulated data sets and evaluate the probability that the 
null hypothesis of no precinct effect is rejected. For the individual precinct boundary tests, results 
are averaged over all 1,000 data sets and all 144 precinct boundaries in NYC. For the global test, 
only one test is run for each simulated data set, and results are averaged over 1,000 simulations.

4.1 Surface construction
We refer to the four different underlying intensity surfaces of the observed outcomes for the NYC 
landscape as (1) Constant, (2) Random, (3) Spatial, and (4) Precinct Effect. Heat maps of one real
ization for each of the surfaces are shown in Figure 8 where the dark red areas represent higher 
values of the outcome. The Constant, Random, and Spatial surfaces represent situations with 
no precinct effect, and therefore, the null hypothesis of no precinct effect is true. The Random 
and Spatial surfaces, however, represent situations where standard regression discontinuity de
signs might fail because there will likely be more counts on one side of the precinct boundary 
than the other due to randomness or spatial variation in the surfaces not driven by any precinct 
effect. These are intended to represent realistic situations in NYC such as crime hotspots or spatial 
correlation in crime levels that can lead to differential counts of outcomes in one precinct than an
other that is not attributable to the precincts themselves. In these situations, our goal is to maintain 
type I error control at level α despite these differential counts. The Precinct Effect surface, however, 
has clear precinct effects and we want to assess the power to detect these differences.

4.2 Type I error control and power
The results from all simulations can be found in Table 2, which shows the percentage of rejected 
hypothesis tests for both the individual tests and global tests, respectively. Note that these results 
are for hypotheses in terms of θ(Rδ), not τ(b). Estimation of τ(b) requires finding the MSE-optimal 
smoothing parameter for the intensity surface estimation at all boundaries of interest, including 
null streets, and is therefore computationally prohibitive to run on such a large scale over 1,000 
simulations. We see that for the Constant, Random, and Spatial surfaces, we are able to recover 
α = 0.05 type I error rates. The Spatial surface is somewhat more challenging and leads to slightly 
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inflated type I error rates for larger buffer widths, while maintaining type I error control at smaller 
buffer widths. In terms of the global test, both statistics perform relatively well, though the max
imum statistic is somewhat more robust with smaller type I error rates in the Spatial surface set
ting. Overall, this shows that the proposed approach is indeed able to provide valid inference even 
in settings with differential outcome levels on either side of the boundary, i.e. when Assumption 2a
is violated. In this setting, violations of Assumption 2a occur in a similar manner across the city, 

Figure 8. Heat maps representing one realization of an intensity surface for the outcomes.

Table 2. Probability of rejecting the null hypothesis across the four simulation scenarios and differing buffer widths

δ Constant Random Spatial Precinct

Individual

300 0.049 0.054 0.051 0.920

400 0.048 0.054 0.053 0.935

500 0.048 0.051 0.054 0.942

600 0.050 0.053 0.063 0.953

700 0.051 0.058 0.074 0.963

800 0.050 0.057 0.080 0.967

900 0.051 0.057 0.082 0.970

1,000 0.052 0.059 0.089 0.973

Global (maxi Zi; Z̅)

300 0.038; 0.040 0.032; 0.041 0.017; 0.024 1.000; 1.000

400 0.048; 0.024 0.028; 0.034 0.019; 0.030 1.000; 1.000

500 0.040; 0.028 0.031; 0.022 0.034; 0.045 1.000; 1.000

600 0.048; 0.032 0.041; 0.034 0.043; 0.108 1.000; 1.000

700 0.044; 0.035 0.040; 0.056 0.061; 0.231 1.000; 1.000

800 0.045; 0.038 0.031; 0.045 0.077; 0.297 1.000; 1.000

900 0.035; 0.045 0.048; 0.049 0.091; 0.348 1.000; 1.000

1,000 0.056; 0.053 0.038; 0.054 0.111; 0.408 1.000; 1.000

Note. The top half of the table corresponds to hypothesis tests at individual precinct boundaries, while the bottom half 
corresponds to the global test of variation across NYC using two different test statistics.
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and therefore Assumption 3 holds and we obtain valid inference. In the Precinct Effect scenario, 
the null hypothesis is not true, and we see that our approach has high power to detect these differ
ences across precincts. The power is slightly below 1 for the individual tests and this is because 
some precincts have very small differences in counts from their neighbouring precincts. The global 
test does not suffer from this issue as it uses either the average or maximum of the test statistics 
over all precinct boundaries, leading to a power of 1. Additionally, in online supplementary 
material, Section 8 we run additional simulation studies with reduced sample sizes and obtain 
similar results.

5 Analysis of precinct by precinct arrest rates
Here, we analyse the NYC arrest data to estimate the degree of variation in policing across the city 
as well as whether there are significant differences between individual precincts with regards to 
their arresting practices. We first discuss our strategy for finding null streets in NYC and use 
our procedure to test the null hypothesis of no precinct effects in the negative control data. 
Then, we use our procedure to test for precinct-specific effects and global variation in policing 
with respect to arrest rates. Given that our outcome of interest is arrest rates and not raw totals 
of arrests, we scale all results by the number of crimes in the corresponding area. For θ(Rδ), this 
is done by dividing all arrest counts by the number of crimes in the same area, and for τ, this is 
done by dividing intensity surfaces for arrests by the intensity surfaces for crimes.

For null streets and the negative control analysis, if an event occurs directly on the boundary 
between the two sides of interest, that point is randomly assigned to one side of the boundary. 
For the main analysis of police precincts, we have information on the precinct of the arresting of
ficer, and we use this to assign a precinct to observations that fall directly on the border. 
Additionally, throughout this section, we present results for differing spatial smoothness values. 
The spatial smoothness level is determined by first using the MSE-optimal estimate of σ2 as in 
Section 3.5, then scaling σ̂2 by some factor (‘smoothing multiplier’) to vary the smoothness. 
Also, note that for constructing intensity surfaces, we use observations that fall within a specified 
radius (‘region size’) from the boundary of interest. We focus on a region size of 600 feet here, but 
ran the same analyses for a range of region sizes and found very similar results. Lastly, all results 
presented in this section are for hypotheses with respect to τ. To see analyses targeting θ(Rδ), as 
well as additional results from the analyses for τ, see online supplementary material, Sections 5
and 6.

5.1 Quantifying the similarity of null streets
As discussed in Sections 3.6 and 3.7, it is important to consider both which covariates to use when 
finding null streets and the number of null streets to use, as both have implications for type I error 
control. One feature of streets that can alter the distribution of the test statistics under the null hy
pothesis is the size of the street being considered. We expect larger streets with more crime to have 
less variability in their test statistics, while small streets with small counts on either side of the 
boundary to have much more variability. In other words, the null streets can be used to learn which 
covariates impact the test statistics and therefore should be incorporated in the final analysis. 
Recall from Section 3.6.2 that c ∈ (0, 1) measures the degree of similarity that a street must 
have to the boundary of interest. Figure 9 illustrates the importance of c as it displays the type I 
error for the negative control analysis of Section 5.2 as a function of c. We see that large values 
of c lead to type I error rates close to the desired level α = 0.05. However, as c approaches 0 
(c = 0 means all streets are considered null streets and covariates are not incorporated) the type 
I error approaches zero. Smaller values of c lead to less similarity between the null streets and 
the precinct boundary of interest, which in this case leads to overly conservative inference. For 
this reason, we proceed with c = 0.9 moving forward to ensure our procedure has well-calibrated 
type I error and there are sufficient numbers of null streets to estimate the null distribution.

5.2 Negative control analysis
Figure 10 shows the per cent of significant associations out of the 144 borders using the proposed 
resampling approach for the negative control analysis as a function of the smoothness parameter. 
The percentage of rejected tests for the naive test in Figure 5 is far above the desired 0.05 level as we 
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see roughly anywhere between 60% and 80% rejection rates, with an increasing trend as a func
tion of the buffer width. Given that this outcome should not be affected by police precincts, these 
results point to a lack of validity of the statistical test being run or the assumptions underlying the 
regression discontinuity design. With our resampling approach to inference, however, the results 
drop to a far more reasonable level with rejection rates close to 0.05 for each smoothness level. 
Additionally, in online supplementary material, Section 5, we show that the p-value histogram 
for each spatial smoothness value appears to be approximately uniformly distributed, as we would 
expect. Overall, the negative control analysis provides further justification for using our proposed 
resampling procedure, and gives increased belief in our findings on arrest rates in the following 
sections.

5.3 Individual boundary estimates of precinct effects
Now that we have constructed null streets for each of the 144 precinct boundaries, we can perform 
hypothesis tests for each boundary to assess whether there is a causal effect of police precincts near 

Figure 9. The type I error as a function of c, a measure of how similar the null streets are to the precinct boundaries 
of interest.

Figure 10. The percentage of p-values across the 144 boundaries that are <.05 using test statistics calculated from 
the constructed intensity surfaces and the proposed resampling procedure. The left panel provides the results for 
the negative control analysis, and the right panel corresponds to the arrest data analysis. We explored various 
smoothing parameter values with larger values corresponding to smoother intensity surfaces.
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the boundary between any two precincts. Figure 10 shows the results of these analyses by pre
senting the percentage of the 144 precinct boundaries for which the hypothesis test of no pre
cinct effect was rejected using our proposed procedure. The naive hypothesis tests in Figure 4
show a large proportion of significant differences with more than 88% of the tests being re
jected. Using the proposed approach, this number is far smaller. The large difference in results 
between the two approaches highlights that either Assumption 2b does not hold in this data 
set, or our statistical test is invalid. Nonetheless, the proportion of significant differences is 
still greater than 0.05 for most levels of spatial smoothness. For instance, at the 
MSE-optimal smoothing parameter (i.e. multiplier =1), 14.4% of the individual tests are re
jected at the α = 0.05 level, which is suggestive of a small amount of precinct-level differences 
in arrest rates. Note also that the percentage of rejections decreases as a function of the spatial 
smoothing multiplier, with a multiplier value of 4 leading to rejections in only 5.8% of the 
precinct boundaries. Smoothing parameters that are four times the MSE-optimal choice lead 
to extreme oversmoothing, which tends to remove effects of finer-level spatial variability. 
While our tests should still be valid (in terms of type I error) in this setting, this may impact 
the power to detect effects. Although we include these results to illustrate our approach across 
a wide range of scenarios, we recommend focusing on smoothing parameter values near the 
MSE-optimal choice of σ2, especially since we acknowledge that there exists some sensitivity 
in type I error to the smoothness level of the surface.

5.4 Global variation in arrest rates
In this section, we apply the approach of Section 3.8 to assess whether there is an overall effect of 
police precincts on arrest rates across NYC. For comparison, we will calculate both Z̅ and maxi Zi 

as test statistics, defined in Section 3.8, to assess the magnitude of the overall precinct effect across 
the entire city. To understand the distribution of each test statistic under the global null hypothesis 

of no precinct effects, we also calculate each test statistic using null streets to obtain Z̅
(b) 

and 
maxi Z(b)

i for b = 1, . . . , B, using the null streets discussed in Section 3.6.2. We perform this pro
cedure B times for each of the distinct levels of spatial smoothness. The results of this procedure 
can be seen in Table 3 and Figure 11. We see that the p-value is quite large and above the α = 0.05 
cut-off for all smoothness values and for both test statistics. As in Section 5.3, the results tend to get 
more conservative as the smoothness parameter is increased. Figure 11 shows the estimated null 
distribution of each test statistic for the MSE-optimal spatial smoothing value, and we see that 
the observed statistic is well contained within the estimated null distribution in each case. This in
dicates that there is not a large degree of variation in policing practices across different precincts 
across NYC. While there may be differences at a small number of precincts, as indicated by the 
results in Section 5.3, these effects appear to be relatively small and not widespread across the city.

6 Discussion
In this manuscript, we first formalized estimands and developed estimation procedures for the 
GeoRDD when the data follow a point process. Additionally, we proposed an approach to hy
pothesis testing for GeoRDDs that weakens the local randomization or continuity assumptions 
that are typically made in such studies. By leveraging the rich spatio-temporal information in 
our data on crime and arrests in NYC, we showed that valid hypothesis tests can be constructed 

Table 3. Results from the global test of variation in policing across NYC illustrating the p-value as a function of spatial 
smoothness

Spatial smoothing multiplier

0.5 1.0 1.5 2.0 3.0 4.0

maxi Zi 0.340 0.670 0.662 0.838 0.878 0.891

Z̅ 0.345 0.429 0.271 0.309 0.569 0.734
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even in the presence of certain violations of local randomization or continuity assumptions around 
the boundary of interest. The main idea is to find new boundaries that behave similarly to the 
boundary of interest, but are not near the border of two police precincts and therefore necessarily 
have no precinct effect. In the analysis of NYC arrest data, we found that analyses relying on a 
local randomization assumption lead to very strong conclusions that police precincts greatly im
pact arrest rates, while our approach based on resampling new streets leads to the conclusion that 
there is, at most, a small effect of police precincts on arresting practices.

Our procedure was shown to work in a geographic regression discontinuity setting, though it is 
potentially applicable to other regression discontinuity settings as well. The only requirement is 
that new cut-offs of the running or forcing variable must be used where no treatment effect exists, 
and that the data set is rich enough to provide a large number of these new locations that are suf
ficiently independent of each other. While our procedure is able to provide statistical validity (type 
I error control) to tests of the hypothesis of no treatment effect, it is not able to correct for biases in 
estimation of treatment effects themselves. Further research is required to reduce the assumptions 
needed for estimation of treatment effects in regression discontinuity designs. Additionally, future 
applications of our approach to areas outside of NYC with potentially different characteristics and 
population densities would offer an interesting new case study as well as insight into the robust
ness of our approach to different contexts.
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