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Introduction

Motivation:

Detecting hemorrhaging (i.e. internal bleeding) in patients in intensive care units (ICUs) can

pose significant challenges for critical care workers because the trauma occurs

subcutaneously. Clinicians ultimately rely on monitoring vital signs for specific trends

indicative of a hemorrhage event.

Delays in the recognition and treatment of deteriorating patients have consistently been

associated with increased mortality.

In those with trauma-related hemorrhage, 40 percent of preventable deaths are related to

inadequate hemorrhage recognition or control [1, 2].

Objectives:

Develop an unsupervised learning methodology for early detection of internal bleeding to

reduce the number of deaths witnessed in trauma ICUs.

Use a Bayesian regime switching model (an extension of a hidden Markov model (HMM)),

with informed priors to assist in identifying latent states of shock.

Integrate method into medical software to provide real time probabilistic assessments of

bleeding and other shock events.

Electronic Health Record (EHR) Data

Longitudinal data (4 major vitals):

(1) Heart rate, (2) mean arterial pressure (MAP), (3) hemoglobin, and (4) lactate concentration

All vitals are discretized on a 15 minute grid.

Other patient information (covariates):

International Classification of Disease (ICD-10) codes: indicator of patient’s medical history

Lab measurements

Red blood cell (RBC) transfusion order and administration times (IMPORTANT)

Regime Switching Setup

State Transitions

s1

s2

s3

s1: Baseline (low risk)

s2: Shock event

s3: Recovery

HMM Description

doubly nested stochastic process

latent state space follows a Markov process

where each state affects the distribution of

the observed data.

Time is treated as discrete since vitals are

measured every 15 minutes, and the latent

state Markov process is defined by a

probability transition matrix.

Standard Assumption: the response at a

given time point is conditionally

independent of all other observations, given

the latent state at that instant.

Model Statement

Bayesian HMM where the physiological state sequence is the latent Markov process.
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Contrary to the conditional independence assumption common in HMMs, the response is

modelled using a vector autoregressive (VAR) process where
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) is the latent physiological state sequence modelled as a Markov process

(ii) α(i) is a 3 × 4 matrix of random effect coefficients corresponding to the states’ effects on the mean process.

(iii) x
(i)
k is a 1 × 1 covariate matrix corresponding to the administration of RBC transfusions

(iv) β is a 1 × 4 vector representing the effect of RBC transfusions on the means of the four vital processes.

The stationary and conditional distributions for the VAR(1) process arey
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Parameter estimation is done using Markov chain Monte Carlo (MCMC) sampling.

Probabilistic Assessment of Shock Events

R-Shiny Application

A crucial piece of this project is how the results from the model are presented in a clinical

environment.

Presenting the posterior probabilities from the charts before is not the most intuitive

representation of the possibility of shock.

A better representation answers the question:
What is the probability that a patient has started bleeding at some point in the last ____ amount

of time?

The probability is presented in a dial system, similar to other medical devices (e.g. FloTrac).

Future Developments

Assessing model performance: This paper and methodology is still under development,

thus we still have to test this approach outside of the training data. Using medical expertise

and other model evaluation techniques, we will assess the performance of our method in

early detection of bleeding and other shock events.

Adding more states: Currently this is a three state model which more broadly detects

“shock.” However, extending the model by adding more states will allow for more refined

detection of specific shock states (e.g. hemorrhage, sepsis, etc.).

Incorporating patient medicine: Medication data can seriously affect the vital

measurements. This will fine tune the ability to detect shock events because it will allow the

model to determine if the vitals are shifting due to medicine, or if some physiological state

of shock is occurring.

Calibrating the detection of shock events: When applied in a medical setting, it is important

to minimize the number of false-positive alerts. Thus, based on simulated data, a “cutoff”

can be determined to serve as an alarm threshold.

Cardiac waveform data: For the data currently, the information about a patient is

discretized every 15 minutes. However, using arterial lines, physicians can monitor vitals at a

nearly continuous rate. Thus, developing the methodology for a functional response HMM

could have large application in progressing the research of early shock detection.
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