
Supplementary Material F: Aalen-Johansen, Nelson-Aalen, and
product-integral applications

The contents include:

(I) Violin plots for additional simulation studies to illustrate the contexts when the Aalen-Johansen and Nelson-
Aalen estimators result in unbiased and biased estimation of transition rate parameters.

(II) Computational time differences between using approach (A) with deSolve versus with prodint.

Part (I)

Setup
The motivation for these simulation studies is to verify that the biased estimation from approach (E) in Sections 3.3 and
3.4 is due precisely to violating the assumptions that all observation times are transition times and all transitions are
observed. The conclusion being, if the modeling assumptions for the Aalen-Johansen and Nelson-Aalen estimators are
met, applying approach (E) detailed in Section 5.2 would lead to unbiased estimation of the transition rate parameters.
The data generating mechanism for these simulation studies is the same as that defined in Section 3.3 of the manuscript,
where the true parameter values defining the model are:
β1

β2

β3

β4

β5

 =


β0,1 β1,1 β2,1
β0,2 β1,2 β2,2
β0,3 β1,3 β2,3
β0,4 β1,4 β2,4
β0,5 β1,5 β2,5

 =


−2.316173 0.2705000 −0.39079609
−1.287563 −0.4930641 −0.05894252
−1.101164 0.2705000 −0.32509646
−2.523675 0.2886209 0.48631653
−2.103848 0.2273128 0.99565810

, π =


0.996593594
0.001464950
0.001941456

0

,

p1
p2
p3
p4

 =


0
0
0
0

.
Note that because p1 = p2 = p3 = p4 = 0, there is no misclassification of states (i.e., state observations are without
error). This eliminates the possibility that biased parameter estimation is a result of state misclassifications. For each
simulated multistate Markov process, we will save three different versions, each representing different assumptions
about the observed process:

(i) observation times do not necessarily correspond to transitions times; not all state transitions are necessarily
observed

(ii) it is known which observation times correspond to transition times; not all state transitions are necessarily
observed

(iii) all observation times correspond to transition times; all state transitions are observed

Case (i) corresponds to the assumptions made in the data generating mechanism for the simulation study in Section 3.3
modulo no state misclassification error, and case (iii) corresponds to the modeling assumptions for the Aalen-Johansen
and Nelson-Aalen estimators. One hundred data sets are simulated for each case (each with 3000 sampled subjects),
and for each data set, approaches (A) and (E) are fit. Violin plots of the estimated transition rate parameters are
presented in Figures 1, 2, and 3 for cases (i), (ii), and (iii), respectively.
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Likelihood construction
Because the three cases represent different modeling assumptions, the likelihood function will vary depending on each
case. To start, the likelihood expression (7) from the manuscript is used for case (i) with D(i,k) = diag(1{si,k =
1}, . . . ,1{si,k = m}) because no state misclassifications are allowed in this simulation. However, for cases (ii) and (iii),
a further transformation of the likelihood in (7) is needed.

More broadly, using the ideas from Section 2.4.1 of Williams et al. (2020), we can account for observing exact
transition times in cases (ii) and (iii) by the following. For a multistate process, X(t), suppose X(ti,k−1) = si,k−1 and
X(ti,k) = si,k such that si,k−1 6= si,k for i ∈ {1, 2, . . . , n}, k ∈ {2, 3, . . . , ni}, and si,k−1, si,k ∈ {1, 2, . . . ,m}. For case
(ii), it is not guaranteed that all state transitions are observed, and so we have to account for all possible transitions
into si,k at precisely ti,k. Accordingly, the likelihood contribution is∑

{`∈{1,...,m}|` 6=si,k−1}

P{X(ti,k) = ` | X(ti,k−1) = si,k−1} · [Q(ti,k)]`,si,k .

Thus, for case (ii), the likelihood in (7) is written as

fs1,...,sn(s1, . . . , sn) =

n∏
i=1

πTD(i,1) ·W ∗(ti,1, ti,2)D(i,2) · · ·W ∗(ti,ni−1, ti,ni
)D(i,ni) · 1m, (∗)

with D(i,k) = diag(1{si,k = 1}, . . . ,1{si,k = m}) and

W ∗(ti,k−1, ti,k) :=

{
P (ti,k−1, ti,k)Q∗(ti,k), si,k−1 6= si,k

P (ti,k−1, ti,k), si,k−1 = si,k
,

where Q∗(ti,k) is the transition rate matrix with zeros along the diagonal. In the case of this simulation study,

Q∗(ti,k) =


0 q1 0 q2
0 0 q3 q4
0 0 0 q5
0 0 0 0

,
with qj = exp(β0,j + β1,j · t+ β2,j · sex) for j ∈ {1, . . . , 5}, where t is time and “sex” ∈ {0, 1} is the biological sex of the
subject.

For case (iii), it is given that all state transitions are observed. As a result, we no longer need to account for all
possible transitions into state si,k at ti,k as in (∗). Instead, we need to model the multistate process remaining in state
si,k−1 between ti,k−1 and ti,k, and immediately transitioning to state si,k at ti,k. This is accomplished using a similar
approach to how the product integral is defined, where

psi,k−1
(ti,k−1, ti,k) :=P{X(t) = si,k−1, ∀t ∈ [ti,k−1, ti,k) | X(ti,k−1) = si,k−1}

= lim
N→∞

N−1∏
j=0

P{X(ti,k−1 + [j + 1] ·∆t) = si,k−1 | X(ti,k−1 + j ·∆t) = si,k−1},

and ∆t := (ti,k − ti,k−1)/N . Hence, the likelihood for case (iii) is given by

fs1,...,sn(s1, . . . , sn) =

n∏
i=1

[π]si,1 ·w∗(ti,1, ti,2) · · ·w∗(ti,ni−1, ti,ni
), (∗∗)
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where

w∗(ti,k−1, ti,k) :=

{
psi,k−1

(ti,k−1, ti,k) · [Q∗(ti,k)]si,k−1,si,k , si,k−1 6= si,k

psi,k−1
(ti,k−1, ti,k), si,k−1 = si,k

.

For a sufficiently large N , it is feasible to estimate psi,k−1
(ti,k−1, ti,k); however, for a forward-only Markov model (as

is the case here and in Section 3.3), it turns out that

psi,k−1
(ti,k−1, ti,k) = [P (ti,k−1, ti,k)]si,k−1,si,k−1

,

which can be estimated using either approach (A) or (E).

Results
Figures 1 and 2, corresponding to cases (i) and (ii), respectively, demonstrate the bias in the Aalen-Johansen and Nelson-
Aalen estimators (i.e., approach (E)) due to violations of the assumptions that all observation times are transition
times and all transitions are observed. Alternatively, Figure 3 illustrates the consistency of parameter estimation from
approach (E) when the model is correctly specified, as in case (iii). Moreover, this justifies and accredits our proposed
mechanism for associating parameter estimates with the Nelson-Aalen estimator. In Figures 1, 2, and 3, the unbiased
parameter estimates for approach (A) indicate its robustness to assumptions about the observed transitions, so long
as the likelihood function is properly specified.

Part (II)
Using the exact same simulated data and modeling structure as found in Section 3.3 of the manuscript, here, we
compare the computational time differences between using approach (A) with deSolve as opposed to with prodint. In
order to numerically compute the transition probability matrix between two time points, say tk and tk+1 (tk+1 > tk),
with prodint, it requires defining a partition of the interval [tk, tk+1] over which to numerically integrate. Define

∆tk :=
tk+1 − tk

s
,

where s is a fixed, positive integer defining the resolution of the partition. Recall that applying approach (A) with
deSolve does not require defining a partition. Thus, for a fixed data set, the likelihood (equation (7) from the
manuscript) is computed using approach (A) with deSolve, as well as computed using approach (A) with prodint
for various partitions. See Figure 4. For a coarser partition, prodint computes a likelihood with a larger deviation
away from the likelihood computed using deSolve. Additionally, as the partition becomes finer, the computation time
using prodint increases almost linearly. Hence, because prodint requires defining a partition, it quickly becomes
computationally infeasible compared to using deSolve; however, aside from computation time, we see that the two
numerical-integration techniques lead to nearly the exact same likelihood computation, for a sufficient resolution of the
partition used for prodint.

References
Williams, J. P., Storlie, C. B., Therneau, T. M., Jack Jr, C. R. & Hannig, J. (2020), ‘A Bayesian approach to multi-

state hidden Markov models: application to dementia progression’, Journal of the American Statistical Association
115(529), 16–31.
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Figure 1: Violin plots of the estimated transition rate parameters from applying approaches (A) and (E) to the data for case (i). The
posterior means of the 100 simulated data sets are plotted for approach (A), and the point estimates for each data set are plotted for
approach (E).
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Figure 2: Violin plots of the estimated transition rate parameters from applying approaches (A) and (E) to the data for case (ii). The
posterior means of the 100 simulated data sets are plotted for approach (A), and the point estimates for each data set are plotted for
approach (E).
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Figure 3: Violin plots of the estimated transition rate parameters from applying approaches (A) and (E) to the data for case (iii). The
posterior means of the 100 simulated data sets are plotted for approach (A), and the point estimates for each data set are plotted for
approach (E).
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Figure 4: Differences between using approach (A) with deSolve compared to with prodint. Note that the red dotted line in the bottom
figure represents the computation time for evaluating the likelihood using deSolve.
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